We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

CERTEST BIOTEC

Certest Biotec, S.L. develops and manufactures IVD products in the human clinical testing field, including rapid test... read more Featured Products: More products

Download Mobile App




Certest Offers Real-Time PCR Assays for Fast Detection of MDR Bacterial Infections

By LabMedica International staff writers
Posted on 23 Sep 2021
Print article

CerTest Biotec (Zaragoza, Spain) has joined the fight against multidrug resistant strains (MDR) bacterial infections by developing real-time PCR assays for the fast detection of genes or punctual mutations that confer resistance to antibiotics from both Gram-positive and Gram-negative pathogens.

Resistance to antibiotics is a natural phenomenon, through which bacteria are able to adapt and survive the activity of these compounds and poses a serious global threat of growing concern to human, animal, and environment health. This is due to the emergence, spread, and persistence of the “superbugs.” Multidrug bacteria exist across the animal, human, and environment triangle and there is interlinked sharing of these pathogens in this triad. The plausible causes of the AMR include excessive use of antibiotics in animals and humans, antibiotics sold over-the-counter, poor sanitation, and release of non-metabolized antibiotics or their residues into the environment through manure. These factors contribute to genetic selection pressure for the emergence of MDR bacterial infections in the community.

Initial inappropriate antimicrobial therapy of severe infections leads to an increased morbidity and mortality. Adequate therapy of severe infections caused by MDR is challenging as many of the main compounds typically used for infections caused by susceptible microorganisms are inactive. This may lead to extensive use of broad-spectrum antibiotics, which would contribute to selection of further resistance and may also expose patients to unnecessary toxicity.

Routine antibiogram techniques are based on a phenotypic study in which microbial growth is observed in the presence of different antibiotics. These techniques include broth macrodilution and microdilution (the gold standard for the antibiogram), agar dilution and strips with an antibiotic gradient. They yield results in around 17 hours. This is why alternative techniques to conventional diagnosis are required that present greater speed, sensitivity, specificity and ability to detect microorganisms, along with their antibiotic resistance mechanism. In addition, techniques are sought with the highest degree of automation possible, ease of implementation and a good cost effectiveness ratio.

CerTest has developed real-time PCR assays for the fast detection of genes or punctual mutations that confer resistance to antibiotics from both Gram-positive and Gram-negative pathogens. These products include multiplex assays for the detection of the principal carbapenem-resistance genes, Methicillin-resistant Staphylococcus aureus infections (MRSA), vancomycin-resistant enterococci (VRE), and the principal beta-lactamase genes. These four multiplex assays cover the main antibiotic resistance genes associated with MDR bacterial infections and sepsis-causing pathogens.

The advantage of these multiplex products is that they can each be used individually or as a broad-spectrum panel to evaluate a sample from a patient. They have been validated both in swab specimens and direct-from-blood. This clinical diagnostic tool allows obtaining the results without having to wait for the incubation time of a culture and has proven to be more sensitive and accurate than these traditional techniques, being able to initiate a personalized treatment, offering a structural model for efficient health care and avoiding the massive use of antibiotics.

Related Links:

CerTest Biotec

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Histamine ELISA
Histamine ELISA
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.