We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Single-Cell Transcriptome Links Gut Development, Pediatric Crohn's Disease

By LabMedica International staff writers
Posted on 29 Dec 2020
Print article
Image: The Chromium Controller is a component of the Chromium platform designed to enable high-throughput analysis of individual biological components, such as up to millions of single cells (Photo courtesy of 10x Genomics).
Image: The Chromium Controller is a component of the Chromium platform designed to enable high-throughput analysis of individual biological components, such as up to millions of single cells (Photo courtesy of 10x Genomics).
Development of the human intestine is a highly complex process that requires synergy between a wide range of cell types. Importantly, environmentally triggered alterations in early development have been implicated in a range of immune-mediated pathologies, including inflammatory bowel diseases (IBD).

Furthermore, a number of studies have reported a link between early fetal intestinal epithelial cell dynamics and IBD suggesting that fetal-like transcriptional programs may re-appear in the intestinal epithelium of IBD patients. Hence, deciphering physiological intestinal development is a critical step toward prevention and treatment of such conditions.

A team of scientists affiliated with the Wellcome Sanger Institute (Wellcome Sanger Institute, Hinxton, UK) generated single-cell RNA-seq profiles for some 90,000 primary intestinal cells from nine fetal samples, seven pediatric Crohn's cases, and eight unaffected controls using the 10x Genomics Chromium platform (Pleasanton, CA, USA) and a Hi-seq 4000 sequencing (Illumina, San Diego, CA, USA).

The team, based on these, along with fetal organoid maturation and single-molecule fluorescence in situ hybridization experiments, identified intestinal cell populations that distinguish developing gut samples from those found in adults. In children with Crohn's disease, on the other hand, they saw epithelial cell activity by transcription factors that are normally limited to fetal roles. While stem cells in the adult gut are typically marked by enhanced expression of the stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), for example, the team's single-cell profiles from embryonic and fetal cells spanning the first six to 10 weeks of development suggested that early epithelial precursor cells have characteristic and relatively consistent expression of a gene called BEX5.

With single-cell transcriptomes and other insights from maturing fetal organoid samples, meanwhile, the scientists got a look at the gene expression, regulation, and signaling shifts that accompany the maturation of intestinal epithelial cells from the stem cell stage to differentiated cell stages. Finally, when they set single-cell gene expression profiles from Crohn's disease cases and controls against available transcriptome data, the investigators saw signs that pediatric Crohn's disease may involve transcription factors that revert to enhanced activity levels found in fetal intestinal cells.

The authors concluded that IBD, and particularly Crohn's disease, are thought to be caused by a complex interplay between the environment and genetic predisposition leading to an irreversibly altered immune response. These latest results provide evidence in humans that regenerating Crohn's disease epithelium shares transcription factor programs otherwise present only in fetal epithelium. The study was published on December 7, 2020 in the journal Developmental Cell.

Related Links:
Wellcome Sanger Institute
10x Genomics
Illumina


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.