We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




New Pathogen Detection Assay Pairs Molecular Inversion Probes, Next-Generation Sequencing

By LabMedica International staff writers
Posted on 21 Feb 2022
Print article
Image: Oxford Nanopore Technologies’ MinIon sequencer is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Bradley Kroner (RDECOM)
Image: Oxford Nanopore Technologies’ MinIon sequencer is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Bradley Kroner (RDECOM)

Next-generation sequencing is rapidly finding footholds in numerous microbiological fields, including infectious disease diagnostics. Molecular inversion probe (MIP) technology can be coupled with next-generation sequencing (NGS) for targeted, multiplexed pathogen detection.

Application of molecular inversion probes (MIPs) before sequencing mitigates several of the classic issues surrounding NGS. Issues such as cost per sample, host background, and necessity for a priori knowledge for real-time PCR are mitigated through MIP multiplex amplification of several signatures at once to include virulence elements, resistance genes, and other identifying elements.

Infectious Disease specialists at the Army Medical Research Institute of Infectious Disease (Fort Detrick, MD, USA) designed a pathogen detection panel consisting of 94 probes targeting 17 viral pathogens and one parasitic organism, eight probes targeting variable 16S rRNA gene regions for bacterial taxonomic classification, as well as 71 probes targeting antibiotic resistance elements. Human clinical serum samples from suspected chikungunya virus (CHIKV) infections were analyzed and determined by using real-time RT-PCR

The Pathogen Identification Panel (PIP) was designed by using the CLC Genomics Workbench (CLC Bio, Cambridge, MA, USA) and AlleleID 7.73 (PREMIER Biosoft, Palo Alto, CA, USA). The scientists tested the ability of the MiSeq sequencer (Illumina, San Diego, CA, USA) and the MinIon sequencer (Oxford Nanopore Technologies [ONT], Oxford Science Park, UK) to sequence small amplicons originating from this panel for the identification of pathogens in complex matrices.

The investigators reported that Illumina sequencing did produce more reads than nanopore sequencing; the average number of reads per sample was approximately 500,000 for Illumina and 50,000 for ONT. Nevertheless, in the end, both platforms performed relatively similar in their sensitivity, specificity, and general statistics. The team did discover some nuances between the two platforms, specifically when it came to 16S taxonomic classification. Of the 31 bacterial pathogens targeted with the MIP panel and subsequently sequenced, the team found Illumina sequencing achieved a genus-level concordance of 96.7% compared to 90.3% with nanopore sequencing. While both sequencing platforms misclassified Klebsiella oxytoca as Enterobacter, nanopore sequencing also misclassified Burkholderia cepecia and Enterobacter aerogenes.

Timothy Minogue, PhD, deputy division chief of USAMRIID’s diagnostic systems division and senior author of the study, said, “The main advantage of using MIPs is the ability to multiplex. Compared with multiplex PCR, which requires different sets of primers for different target organisms, MIP enrichment uses universal primers for all amplifications, removing the PCR competition.”

The authors concluded that MIPs continue to be a valuable upfront molecular amplification technique easily adapted to ever-evolving downstream molecular technologies. The fundamental molecular aspects of MIPs, including the specificity and adaptability afforded by the linker backbone, promises this molecular technique will continue to be utilized well into the future. The study was published on January 24, 2022 in The Journal of Molecular Diagnostics.

Related Links:
Army Medical Research Institute of Infectious Disease 
CLC Bio
PREMIER Biosoft 
Illumina 
Oxford Nanopore Technologies 

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.