We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible

By LabMedica International staff writers
Posted on 22 Apr 2025
Print article
Image: Light accelerates DNA hybridization using gold nanoparticles and polystyrene microparticles as probes for PCR-free DNA detection (Photo courtesy of Osaka Metropolitan University)
Image: Light accelerates DNA hybridization using gold nanoparticles and polystyrene microparticles as probes for PCR-free DNA detection (Photo courtesy of Osaka Metropolitan University)

Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction (PCR) has been the gold standard for analyzing DNA changes. With the onset of the COVID-19 pandemic, the term "PCR" became widely recognized. However, PCR tests are expensive, time-consuming, and require specialized lab equipment and trained personnel. While PCR-based genetic testing gained significant attention during the pandemic, light-based methods are now offering a PCR-free alternative for genetic analysis.

Researchers at Osaka Metropolitan University (Osaka, Japan) have developed a groundbreaking light-induced DNA detection method that employs heterogeneous probe particles. This innovative technique enables highly sensitive and rapid genetic analysis without the need for PCR amplification. This advance promises to make genetic testing faster, more affordable, and more precise, benefiting fields like medicine, environmental science, and portable diagnostics. Unlike PCR, which amplifies DNA sequences by creating millions of copies for detection, this new approach directly identifies DNA by concentrating it and enhancing its specificity through optical forces and the photothermal effect. In their study, published in ACS Sensors, the researchers used heterogeneous probe particles, including gold nanoparticles and polystyrene microparticles, to create a detection system. These probes are short DNA sequences that are designed to bind with complementary sequences in the target DNA.

This process, known as DNA hybridization, results in the formation of detectable DNA pairs through fluorescence. The solution containing the target DNA and probe particles was then irradiated with laser light. When the particle size aligns with the laser wavelength, a phenomenon called Mie scattering occurs, which generates optical forces that move the particles and speed up DNA hybridization. The gold nanoparticles absorb the laser light, producing localized heat, also known as the photothermal effect, which further enhances the specificity of the hybridization. By eliminating the need for PCR amplification, this method reduces both the cost and complexity of genetic testing while delivering faster results. This innovation has the potential to make genetic analysis more accessible, with wide-ranging applications in healthcare and personal health tracking.

“Our light-induced method detects DNA without the need for PCR,” wrote the study’s lead authors. “Using just about five minutes of laser light irradiation, our method demonstrated great potential for accurate mutation detection with a sensitivity one order of magnitude higher than that of digital PCR. We aim to apply this PCR-free technology to high-sensitivity cancer diagnostics, quantum life science research, and even at-home or environmental DNA testing.”

Related Links:
Osaka Metropolitan University

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.