We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Direct Real-Time PCR Protocol Detects Monkeypox Virus

By LabMedica International staff writers
Posted on 16 Nov 2022
Print article
Image: The Applied Biosystems Quant Studio 6 Pro Real-Time PCR System adds innovative smart features to the real-time PCR (qPCR) workflow, all in a compact footprint (Photo courtesy of Thermo Fisher Scientific)
Image: The Applied Biosystems Quant Studio 6 Pro Real-Time PCR System adds innovative smart features to the real-time PCR (qPCR) workflow, all in a compact footprint (Photo courtesy of Thermo Fisher Scientific)

Monkeypox virus, an encapsulated double-stranded DNA virus and member of the Poxviridae family, is responsible for the recent monkeypox outbreak that has been declared a public health emergency of international concern.

Prompt identification of infected individuals followed by contact tracing is important for stemming the spread of disease. The characteristic rash of monkeypox progresses through multiple stages, beginning with a macular phase, progressing through papular, vesicular, and pustular phases, and ending with a scab phase.

Clinical Pathologists at the Feinberg School of Medicine (Chicago, IL, USA) collected clinical specimens from patients at locations within the Northwestern Medicine health system. Lesions were swabbed with sterile synthetic swabs, and the swabs were submitted to the laboratory dry or in 3 mL of viral transport media (M4 VTM). Dry swabs received by the laboratory were immediately added to 3 mL of M4 VTM. At the start of the monkeypox outbreak, a total of 20 samples identified as positive by the direct assay and 20 samples identified as negative by the direct assay were sequentially chosen for confirmation by indirect method. DNA extraction for the indirect method was performed using the Qiagen manual DNA extraction kit utilizing spin-column–based nucleic acid purification (Qiagen, Germantown MD, USA).

A modified multiplex version of the CDC monkeypox assay was performed for clinical validation purposes. Previously published probe and primers targeting monkeypox were used. After processing, this was followed by real-time PCR on the Quant Studio 6 instrument (Thermo Fisher Scientific, Waltham, MA, USA). Cycling conditions included a 20-second activation step at 95 °C, followed by 40 cycles of 3 seconds at 95 °C and 30 seconds at 60°C.

The investigators generated a standard curve was by diluting plasmid monkeypox control DNA to concentrations ranging from 1 to 1,000,000 copies/mL and determining the corresponding CT value. The assay displayed excellent linearity (R2 = 0.9994). The limit of detection was determined by replicate determinations of CT values (n = 20) of 5, 50, and 1000 copies/mL samples. The mean CT values of 5 copies/mL were determined to be 36 on both the direct and indirect assay, with an SD of 0.75 (range, 34.61 to 37.39). The analytical specificity was determined by running the assay with control materials for 23 different viruses, bacteria, and fungi. No signal within the limit of detection was detected by the assay in any of the control materials. Blood did have an inhibitory effect on the assay, with increasing concentration of blood leading to greater inhibition. Samples with 20% blood had complete inhibition.

The authors concluded that the validation of a direct method monkeypox assay will allow laboratories to lower costs, reduce dependence on the supply chain for nucleic acid extraction kits, and decrease exposure of laboratory scientists to potentially infectious specimens. In addition, it may be suitable for incorporation into automated and high-throughput testing. This direct method will make it easier for laboratories across the world to rapidly develop, validate, and scale testing for monkeypox virus. The study was published in the November 2022 issue of The Journal of Molecular Diagnostics.

Related Links:
Feinberg School of Medicine
Qiagen
Thermo Fisher Scientific

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
LH ELISA
Luteinizing Hormone ELISA
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.