We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Groundbreaking CRISPR Technology Could Revolutionize Diagnosis of Genetic Diseases

By LabMedica International staff writers
Posted on 29 Jan 2024
Print article
Image: A study could pave the way for better diagnosis of rare genetic diseases (Photo courtesy of 123RF)
Image: A study could pave the way for better diagnosis of rare genetic diseases (Photo courtesy of 123RF)

Diagnosing rare genetic diseases presents a significant challenge due to their complex and often hidden nature. These conditions can arise from a diverse array of genetic variations, many of which are uncommon or specific to each individual, complicating the identification of the exact cause of symptoms. Until recently, unraveling these mysteries involved extensive genetic testing and comparing an individual’s genetic profile against established disease patterns. Complicating matters further, many relevant genes are inactive in commonly tested tissues like blood and skin, which makes it difficult to get a clear picture of the genetic basis of these diseases. This complexity not only prolongs the diagnostic process but also extends patient and family uncertainty and delays the initiation of suitable treatments. Now, a new study could mark a significant step forward in the rapid and efficient diagnosis of these complex diseases, which can affect any part of the body.

At Aarhus University in Denmark, researchers have employed CRISPR technology to activate genes in easily accessible cells such as skin or blood. This technique enables the measurement of the correct assembly of messenger RNA - a biological process known as splicing. This advancement is significant since approximately 19% of genes associated with diseases are inactive in readily obtainable tissues like skin and blood cells. Using CRISPR activation, a groundbreaking method that “switches on” normally inactive genes, the researchers successfully activated the MPZ gene, typically active only in the insulating layer of nerve pathways. By activating this gene in skin cells, the team has opened new avenues for analyzing, diagnosing, and understanding genetic diseases.

This innovative approach aims to enhance the efficiency, accuracy, and accessibility of diagnosing genetic diseases. The research team is already working to integrate this technology into clinical diagnostics. This method could significantly contribute to making accurate diagnoses when splicing variants are identified. Furthermore, the team is exploring the wider application of this method and plans to validate a larger panel of genes to determine how the technique can be expanded and modified for even simpler clinical applications.

"With CRISPR activation, the gene can be turned on in a natural environment. There's no need for gene modification in cell models; one can simply take a sample from the patient," said Uffe Birk Jensen from Aarhus University. “The same method can be used for different patients and easily adapted to other genes, and the advantage is that it's very fast with the possibility of results within a few weeks.”

Related Links:
Aarhus University

New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Electroporation System
Gibco CTS Xenon
New
Myocardial Infarction Test
Savvycheck SensA Heart

Print article

Channels

Microbiology

view channel
Image: The test covers the most important bacterial pathogens across all age groups with a single cartridge (Photo courtesy of BHCS)

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.