Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Groundbreaking Blood Test Offers Early Pancreatic Cancer Diagnosis

By LabMedica International staff writers
Posted on 04 Mar 2024

Pancreatic cancer ranks as the third leading cause of cancer-related deaths, primarily due to its late detection. Early discovery of the disease, while it's still treatable, could significantly impact survival rates. For more than a century, scientists have sought to link cancer with cellular energy production and metabolism. The advent of quantitative mass spectrometry has enabled the testing of many such theories. Now, for the first time, researchers have utilized targeted mass spectrometry to demonstrate that pancreatic cancer stems from changes in cellular metabolism that are detectable using a simple blood test. This method could lead to more precise and earlier diagnoses of pancreatic cancer than currently possible with tumor markers or imaging techniques, potentially paving the way for more timely and appropriate therapeutic interventions.

In contrast to genomic approaches that measure DNA for early detection and often struggle with false positives and negatives, mass spectrometry can measure extremely low concentrations of biochemicals in plasma with remarkable accuracy. Scientists at Metabolomycs (Long Beach, CA, USA) have found that these metabolic signatures in the blood can predict survival rates in patients battling this aggressive cancer. This discovery marks a new direction in pancreatic cancer research, moving beyond genomics and DNA analysis to define the disease as a metabolic disorder.

According to the researchers, variations in amino acids, blood sugars, and lipids define cancer as a state of metabolic stress. Metabolomics, a novel scientific field, employs sensitive tools like mass spectrometry to quantify metabolic byproducts in blood and other bodily fluids. Although mass spectrometry has broad applications, the emergence of targeted mass spectrometry has facilitated its direct clinical use. For the first time, researchers can accurately measure blood levels of metabolic byproducts in real-time. This enabled the researchers to discover highly discriminating ratios that pitted amino acids, the building blocks of proteins, against lipids including triglycerides and sugars like glucose. These findings provide a unique "cancer signature" that differentiates individuals with pancreatic cancer from healthy subjects and can also distinguish pancreatic cancer from other cancer types, such as breast and ovarian cancer.

"What we find is that pancreatic cancers establish a new set of rules for making and using energy that propel these malignant tumors to succeed, all at the expense of the cancer patient's wellbeing," said Dr. Robert Nagourney. "Our findings show that these metabolic tests have the potential to identify pancreatic cancers at the earliest stages when it is still possible to cure the patient. They can also be used to define risk groups that help predict a patient's likelihood of survival."

Related Links:
Metabolomycs

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.