Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Synthetic Biomarker Technology Differentiates Between Prior Zika and Dengue Infections

By LabMedica International staff writers
Posted on 14 May 2024

Until now, researchers and clinicians have lacked diagnostic tools to easily differentiate between past infections with different flaviviruses—a family of mostly mosquito- and tick-borne viruses that include Zika and dengue. This challenge has hindered clinical-epidemiologic studies, viral diagnostics, and vaccine development. Antibodies for Zika virus, a mosquito-borne virus that spread to the Americas in 2015 and continues to cause sporadic outbreaks, can often be mistaken for dengue virus antibodies in many diagnostic tests. This confusion makes it difficult to determine if a person who tests positive had dengue, Zika, or both. For reproductive-age women, it is particularly crucial to know if they have had Zika and likely have immunity since infection during pregnancy can lead to birth defects. Knowing their immunity status can guide their efforts to avoid mosquito bites in endemic areas during pregnancy. Now, a newly discovered Zika virus-specific synthetic molecule can distinguish Zika-immune patient samples from those previously infected with dengue virus. This technology may lead to the development of better diagnostics and vaccine candidates.

The study, led by researchers at the University of Pittsburgh (Pittsburgh, PA, USA) and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology (Jupiter, FL, USA), is the first to apply the novel “epitope surrogate” technology to Zika. The research team utilized an approach pioneered by co-senior author Thomas Kodadek, Ph.D., a chemist with The Wertheim UF Scripps Institute, to screen half a million “peptide-inspired conformationally constrained oligomers,” or PICCOs, against blood samples from individuals infected with either dengue or Zika virus. PICCOs are nonorganic molecular shapes attached to microscopic plastic beads that mimic epitopes—the parts of a pathogen that an antibody would bind to in order to neutralize the threat.

If any of the PICCOs match the shape of an antibody in the blood sample, the antibody will bind to them, allowing researchers to "fish" it out. The presence of an antibody against a virus in a person's blood indicates a past infection or vaccination, prompting the immune system to produce antibodies. The researchers identified 40 PICCOs that interacted with Zika virus antibodies. After screening these against dengue-positive blood, one PICCO, named CZV1-1, was particularly effective at binding Zika antibodies but not dengue antibodies. This single CZV1-1 PICCO synthetic molecule correctly identified individuals previously infected with Zika virus 85.3% of the time and produced false positives in only 1.6% of tests, rates comparable to COVID-19 antibody tests. Notably, the PICCO screening technology used to identify the Zika-specific molecule does not require refrigeration and could also be adapted for other outbreaks.

“The technology is amazing. You don’t need to know the sequence, or the structure, or even the pathogen,” said co-senior author Donald Burke, M.D., Pitt Public Health dean emeritus. “As long as you have chosen the right sets of patient blood samples to compare, you can tease out the important antibodies that differ between the patient sets, along with the corresponding synthetic molecule biomarkers.”

Related Links:
University of Pittsburgh
The Wertheim UF Scripps Institute

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
TORCH Infections Test
TORCH Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.