We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultrasound-Aided Blood Testing Detects Cancer Biomarkers from Cells

By LabMedica International staff writers
Posted on 15 May 2024
Print article
Image: Ultrasound image of micro-histotripsy liberation of biomarkers in a tumor (Photo courtesy of Joy Wang and Pradyumna Kedarisetti)
Image: Ultrasound image of micro-histotripsy liberation of biomarkers in a tumor (Photo courtesy of Joy Wang and Pradyumna Kedarisetti)

Ultrasound imaging serves as a noninvasive method to locate and monitor cancerous tumors effectively. However, crucial details about the cancer, such as the specific types of cells and genetic mutations involved, typically require invasive biopsies, which can cause harm. Now, a research team has developed a new method to utilize ultrasound for gently extracting this genetic information.

Researchers at the University of Alberta (Edmonton, AB, Canada) have been investigating the use of intense ultrasound in releasing biological indicators of disease, or biomarkers, from cells. These biomarkers include elements like miRNA, mRNA, DNA, and various genetic mutations, all of which are critical for identifying the cancer type and guiding treatment decisions. The ultrasound technique releases these biomarkers from the cells into the bloodstream, where they reach concentrations high enough to be detected. This enables oncologists to identify and track the cancer's status or response to treatment through blood samples instead of invasive biopsies, making the process less painful and more cost-effective.

The application of ultrasound has proven to enhance the presence of genetic and vesicle biomarkers in blood samples by more than 100 times. The researchers successfully identified panels of tumor-specific and now epigenetic mutations that previously could not be detected in blood samples. This method is not only effective but also more affordable than traditional tests. They noted that ultrasound-enhanced blood tests could be performed at a cost similar to that of a COVID test, a significant reduction from the usual USD 10,000 per test.

Furthermore, the research team explored using intense ultrasound to liquefy small tissue samples for easier biomarker detection. This liquefied tissue can be collected from blood samples or via fine-needle syringes, which are considerably less invasive than traditional core-needle biopsies. These advancements in cancer detection technology could lead to earlier diagnosis and treatment, offering healthcare providers flexibility in managing treatment efficacy without the high costs and risks typically associated with frequent biopsies.

“We hope that our ultrasound technologies will benefit patients by providing clinicians a new kind of molecular readout of cells and tissues with minimal discomfort,” said Roger Zemp from the University of Alberta who led the team.

Related Links:
University of Alberta

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.