We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Method Combining Nano Informatics and AI Paves Way for Cancer Blood Tests

By LabMedica International staff writers
Posted on 31 May 2024
Print article
Image: The researchers Yoel Goldstein and Ofra Benny in the Lab (Photo courtesy of Yoram Aschheim)
Image: The researchers Yoel Goldstein and Ofra Benny in the Lab (Photo courtesy of Yoram Aschheim)

Current diagnostic methods for cancer often fall short in terms of precision and efficiency. Traditional techniques, such as imaging scans and tissue biopsies, are invasive, costly, and time-consuming. These methods can lead to treatment delays and potential misdiagnoses, as they may not fully capture the dynamic nature of cancer progression or provide detailed insights into the disease at the cellular level. As a result, patients might face delayed diagnoses, less than-optimal treatment outcomes, and increased psychological stress. These challenges underscore the critical need for more effective and non-invasive diagnostic tools. Now, a promising new method combines nano informatics and machine learning to predict cancer cell behavior with high accuracy. This innovative approach could potentially transform how cancer is diagnosed and treated by allowing for the quick identification of different cancer cell subpopulations based on their biological behaviors.

This novel method introduced in a recent study at the Hebrew University of Jerusalem combines nano informatics and machine learning to precisely predict cancer cell behaviors. This method facilitates the identification of cell subpopulations with unique characteristics, such as varying levels of drug sensitivity and potential for metastasis. This advancement could revolutionize cancer diagnostics and treatment, promoting personalized medicine by enabling fast and precise testing of cancer cell behaviors directly from patient biopsies. This could also lead to the development of new clinical tests for monitoring disease progression and treatment efficacy.

The study began by exposing cancer cells to differently sized particles, each marked with a distinct color. The researchers then measured the exact amount of particles ingested by each cell. Using machine learning algorithms, they analyzed these particle uptake patterns to predict crucial behaviors of the cells, such as their sensitivity to drugs and their potential to metastasize. This significant discovery could pave the way for breakthroughs in cancer diagnosis and treatment, enabling the identification of distinct cancer cell subpopulations through simple and expedient tests. This research sets the stage for developing new clinical tests that could markedly improve patient care.

"Our method is novel in its ability to distinguish between cancer cells that appear identical but behave differently at a biological level," said doctoral student Yoel Goldstein who led the study, which was published in Science Advances on May 29, 2024. "This precision is achieved through algorithmic analysis of how micro and nanoparticles are absorbed by cells. Being capable to collect and analyze new types of data brings up new possibilities for the field, with the potential to revolutionize clinical treatment and diagnosis through the development of new tools."

"This discovery allows us to potentially use cells from patient biopsies to quickly predict disease progression or chemotherapy resistance," stated Prof. Ofra Benny from the School of Pharmacy in the Faculty of Medicine. "It could also lead to the development of innovative blood tests that assess the efficacy of targeted immunotherapy treatments as example."

Related Links:
The Hebrew University of Jerusalem

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.