We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Method Combining Nano Informatics and AI Paves Way for Cancer Blood Tests

By LabMedica International staff writers
Posted on 31 May 2024
Print article
Image: The researchers Yoel Goldstein and Ofra Benny in the Lab (Photo courtesy of Yoram Aschheim)
Image: The researchers Yoel Goldstein and Ofra Benny in the Lab (Photo courtesy of Yoram Aschheim)

Current diagnostic methods for cancer often fall short in terms of precision and efficiency. Traditional techniques, such as imaging scans and tissue biopsies, are invasive, costly, and time-consuming. These methods can lead to treatment delays and potential misdiagnoses, as they may not fully capture the dynamic nature of cancer progression or provide detailed insights into the disease at the cellular level. As a result, patients might face delayed diagnoses, less than-optimal treatment outcomes, and increased psychological stress. These challenges underscore the critical need for more effective and non-invasive diagnostic tools. Now, a promising new method combines nano informatics and machine learning to predict cancer cell behavior with high accuracy. This innovative approach could potentially transform how cancer is diagnosed and treated by allowing for the quick identification of different cancer cell subpopulations based on their biological behaviors.

This novel method introduced in a recent study at the Hebrew University of Jerusalem combines nano informatics and machine learning to precisely predict cancer cell behaviors. This method facilitates the identification of cell subpopulations with unique characteristics, such as varying levels of drug sensitivity and potential for metastasis. This advancement could revolutionize cancer diagnostics and treatment, promoting personalized medicine by enabling fast and precise testing of cancer cell behaviors directly from patient biopsies. This could also lead to the development of new clinical tests for monitoring disease progression and treatment efficacy.

The study began by exposing cancer cells to differently sized particles, each marked with a distinct color. The researchers then measured the exact amount of particles ingested by each cell. Using machine learning algorithms, they analyzed these particle uptake patterns to predict crucial behaviors of the cells, such as their sensitivity to drugs and their potential to metastasize. This significant discovery could pave the way for breakthroughs in cancer diagnosis and treatment, enabling the identification of distinct cancer cell subpopulations through simple and expedient tests. This research sets the stage for developing new clinical tests that could markedly improve patient care.

"Our method is novel in its ability to distinguish between cancer cells that appear identical but behave differently at a biological level," said doctoral student Yoel Goldstein who led the study, which was published in Science Advances on May 29, 2024. "This precision is achieved through algorithmic analysis of how micro and nanoparticles are absorbed by cells. Being capable to collect and analyze new types of data brings up new possibilities for the field, with the potential to revolutionize clinical treatment and diagnosis through the development of new tools."

"This discovery allows us to potentially use cells from patient biopsies to quickly predict disease progression or chemotherapy resistance," stated Prof. Ofra Benny from the School of Pharmacy in the Faculty of Medicine. "It could also lead to the development of innovative blood tests that assess the efficacy of targeted immunotherapy treatments as example."

Related Links:
The Hebrew University of Jerusalem

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.