We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Test Detects Return of Blood Cancer a Year Earlier

By LabMedica International staff writers
Posted on 19 Jun 2024
Print article
Image: The new test’s measurement is a thousand times more sensitive than current standard test (Photo courtesy of 123RF)
Image: The new test’s measurement is a thousand times more sensitive than current standard test (Photo courtesy of 123RF)

Multiple myeloma, also known as Kahler's disease, is a type of blood cancer originating in the bone marrow characterized by the uncontrolled proliferation of plasma cells, a specific type of white blood cell. Remarkably, half of the patients initially respond to treatment to a degree where the disease becomes undetectable in their blood, but unfortunately, the disease almost invariably returns. Currently, to monitor for the return of the disease, the standard practice involves a bone marrow biopsy, an invasive procedure that is not feasible to perform frequently. This method's reliability can also vary since the disease may not be uniformly distributed across the bone marrow. Alternatively, a less sensitive blood test is available, but it only detects the disease's return when the cancer cell count is considerably elevated. Now, researchers have developed a new blood test that can detect the return of multiple myeloma a full year earlier than the current standard blood test.

This advanced blood test, developed by scientists at Radboud University Medical Center (Nijmegen, the Netherlands) in collaboration with Erasmus MC (Rotterdam, Netherlands), is a thousand times more sensitive than the currently used blood test. It works by measuring antibodies produced by plasma cells, which are crucial to immune defense. Normally, a variety of plasma cells produce antibodies to combat different pathogens, but in multiple myeloma, one plasma cell type multiplies excessively, producing numerous identical plasma cells and antibodies, which the new test targets. Initially, customizing the test for individual patients required 125 days, but researchers have now refined the process to accommodate any patient and simultaneously test 25 patients, reducing the development time to just five days.

Moreover, the team has developed new software that enhances the measurement process, enabling even faster detection of tumor cell signals. In a trial involving forty patients, this test proved capable of detecting increases in cancer cells a year earlier than the standard blood test. The procedure needs less than a drop of blood, making it minimally invasive. Researchers are also exploring the possibility of patients performing the blood collection at home via a simple finger prick, which would bypass the need for hospital visits for blood draws, further innovating patient care in this field.

“Patients whose disease is no longer measurable after treatment often live in uncertainty for years”, said Hans Jacobs, Medical Immunologist. “With the new blood test, you can monitor much better, providing clarity. When the current blood test shows the cancer's return, the number of cancer cells is already high, and a different therapy is initiated. With the new test, we see the increase in cancer cells much earlier. This may allow for quicker and better adaptation of therapy to the patient’s situation, but we don’t know that yet. We will investigate this.”

Related Links:
Radboud University Medical Center 
Erasmus MC 

New
Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Calprotectin One Step Card Test
CerTest Calprotectin
New
Plasmodium Parasites Test
Plasmodium Genotyping Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The integrated optical sensor is capable of detecting dopamine directly from an unprocessed blood sample (Photo courtesy of Professor Debashis Chanda)

Rapid Dopamine Test to Enable Early Detection of Neurological Disorders

Neurotransmitters are essential for regulating neural function and overall well-being in humans and animals, ensuring a balanced hormonal environment for optimal body functioning. Dopamine is particularly... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
A schematic of the 3D MM imaging experimental setup used in the studies of blood films (Photo courtesy of Ushenko, A.G., et al.; doi.org/10.1038/s41598-024-63816-z)

Novel Light-Based Technique With 90% Accuracy Rate to Revolutionize Cancer Diagnosis

A quicker, cheaper, and less painful cancer detection technique developed using light has the potential to revolutionize cancer diagnosis, early detection, and monitoring. Researchers at Aston Institute... Read more

Industry

view channel
Image: The QIAstat-Dx IVD panel for neurodegenerative applications will be integrated with the QIAstat-Dx multiplex testing platform (Photo courtesy of QIAGEN)

Qiagen and Eli Lilly to Develop First QIAstat-Dx IVD Panel for Neurodegenerative Applications

QIAGEN N.V. (Venlo, the Netherlands) has entered into a collaboration with Eli Lilly and Company (Indianapolis, IN, USA) to support the development of a QIAstat-Dx in-vitro diagnostic (IVD) to detect APOE genotypes.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.