We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Low-Cost CRISPR-Based Paper Strip Test to Improve Flu Diagnosis and Surveillance

By LabMedica International staff writers
Posted on 24 Jun 2024
Print article
Image: The SHINE rapid diagnostic test uses paper strips and CRISPR enzymes to identify specific sequences of viral RNA in samples (Photo courtesy of Jon Arizti-Sanz)
Image: The SHINE rapid diagnostic test uses paper strips and CRISPR enzymes to identify specific sequences of viral RNA in samples (Photo courtesy of Jon Arizti-Sanz)

Annually, less than 1% of people who contract the flu are tested, largely due to the need for skilled personnel and sophisticated equipment. Now, researchers have developed a low-cost paper strip test that could enable more individuals to determine the type of flu they have and receive appropriate treatment.

This innovative test developed by researchers from the Broad Institute of MIT and Harvard (Cambridge, MA, USA) and Princeton University (Princeton, NJ, USA) employs CRISPR technology to differentiate between the primary seasonal flu types, influenza A and B, and the subtypes H1N1 and H3N2. It can also identify strains resistant to  antiviral treatments and could potentially extend to detecting swine and avian flu strains, including H5N1, which currently affects cattle. This could enhance both outbreak response and clinical care by making accurate, affordable, and rapid testing accessible in doctors’ offices and laboratories across the world. The test is based on a technology known as SHINE, developed by the team in 2020, which uses CRISPR enzymes to identify specific viral RNA sequences in samples. Initially applied to detect SARS-CoV-2 and its variants Delta and Omicron, the technology was adapted in 2022 to screen for widespread viruses like the flu, aiming for use in field or clinic settings outside traditional hospital or diagnostic lab environments.

Traditional diagnostic methods like polymerase chain reaction (PCR) involve long processing times, specialized training and equipment, and the need for deep freeze storage for reagents. In contrast, the SHINE assay operates at room temperature and completes in about 90 minutes. The only equipment required currently is an affordable heat block to heat the reactions, and efforts are underway to reduce the result time to 15 minutes. The researchers have also fine-tuned SHINE to differentiate between various flu strains and suggest it might later be adjusted to identify different viruses with similar symptoms, such as influenza and SARS-CoV-2. This capability could aid clinicians in deciding whether to administer treatments like Oseltamivir, which is only effective against certain flu strains. In outbreak scenarios, rapid testing could also enable more targeted sample collection to better track virus spread. Moving forward, the team plans to further adapt SHINE for detecting both avian and swine influenza strains.

“Ultimately, we hope these tests will be as simple as rapid antigen tests, and they’ll still have the specificity and performance of a nucleic acid test that would normally be done in a laboratory setting,” said Cameron Myhrvold, assistant professor at Princeton University and co-senior author on the study, which was published in The Journal of Molecular Diagnostics on June 18, 2024.

Related Links:
Broad Institute
Princeton University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The proposed self-powered, millifluidic lab-on-a-chip device to determine blood conductivity (Photo courtesy of Advanced Materials/DOI: 10.1002/adma.202403568)

First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring

Metabolic disorders such as diabetes and osteoporosis are rapidly increasing globally, especially in developing countries. Diagnosing these conditions generally requires blood tests; however, in remote... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.