We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cutting-Edge AI Analyzes Blood Samples to Predict Disease 10 Years Before Diagnosis

By LabMedica International staff writers
Posted on 31 Jul 2024
Print article
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)

Scientists have developed an advanced artificial intelligence (AI) approach that can predict the likelihood of developing age-related conditions such as Alzheimer's and heart disease up to a decade before symptoms manifest. By analyzing blood samples from over 45,000 individuals using machine learning, researchers identified specific protein patterns associated with an increased risk of disease. This capability to predict the probability of developing a health condition before any symptoms are observed could potentially enhance personalized medicine by providing early warnings, thereby opening doors for preventative interventions.

Researchers from the University of Edinburgh (Edinburgh, UK) participated in a study that used data from the UK Biobank, which contains genetic and health information from half a million UK participants. They applied AI and machine learning to detect protein patterns in blood that correlate with the onset of common ailments including Alzheimer’s, heart disease, and type 2 diabetes. The analysis was based on medical records that extended up to ten years following the initial blood sample collection.

Furthermore, the research team validated their findings by applying the identified protein patterns to diagnose conditions in blood samples from another group of participants who were not included in the initial analysis. The results, detailed in the journal Nature Aging, showed that these protein patterns could predict health conditions with greater accuracy than traditional risk factors such as age, sex, lifestyle choices, cholesterol levels, and other standard clinical measurements. Although the implementation of this predictive analysis may not be immediate, experts acknowledge that this research marks significant progress in the field of risk prediction.

“It’s encouraging to see how much potential there is from a single blood sample that allow us to predict a range of disease outcomes,” said Dr. Danni Gadd, University of Edinburgh. “Being able to detect early warning signs for a broad set of conditions may lead to opportunities for early intervention and prevention, marking a significant moment for the healthcare industry.”

Related Links:
University of Edinburgh

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Troponin T QC
Troponin T Quality Control
New
Washer Disinfector
Tiva 8
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.