We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cutting-Edge AI Analyzes Blood Samples to Predict Disease 10 Years Before Diagnosis

By LabMedica International staff writers
Posted on 31 Jul 2024
Print article
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)
Image: AI insights predict disease a decade in advance (Photo courtesy of University of Edinburgh)

Scientists have developed an advanced artificial intelligence (AI) approach that can predict the likelihood of developing age-related conditions such as Alzheimer's and heart disease up to a decade before symptoms manifest. By analyzing blood samples from over 45,000 individuals using machine learning, researchers identified specific protein patterns associated with an increased risk of disease. This capability to predict the probability of developing a health condition before any symptoms are observed could potentially enhance personalized medicine by providing early warnings, thereby opening doors for preventative interventions.

Researchers from the University of Edinburgh (Edinburgh, UK) participated in a study that used data from the UK Biobank, which contains genetic and health information from half a million UK participants. They applied AI and machine learning to detect protein patterns in blood that correlate with the onset of common ailments including Alzheimer’s, heart disease, and type 2 diabetes. The analysis was based on medical records that extended up to ten years following the initial blood sample collection.

Furthermore, the research team validated their findings by applying the identified protein patterns to diagnose conditions in blood samples from another group of participants who were not included in the initial analysis. The results, detailed in the journal Nature Aging, showed that these protein patterns could predict health conditions with greater accuracy than traditional risk factors such as age, sex, lifestyle choices, cholesterol levels, and other standard clinical measurements. Although the implementation of this predictive analysis may not be immediate, experts acknowledge that this research marks significant progress in the field of risk prediction.

“It’s encouraging to see how much potential there is from a single blood sample that allow us to predict a range of disease outcomes,” said Dr. Danni Gadd, University of Edinburgh. “Being able to detect early warning signs for a broad set of conditions may lead to opportunities for early intervention and prevention, marking a significant moment for the healthcare industry.”

Related Links:
University of Edinburgh

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.