We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Computational Model Significantly Improves Quality of Microscopy Images

By LabMedica International staff writers
Posted on 25 Dec 2024
Print article
Image: Illustration of an m-rBCR model for light microscopy (Photo courtesy of HZDR/A. Yakimovich)
Image: Illustration of an m-rBCR model for light microscopy (Photo courtesy of HZDR/A. Yakimovich)

The computational processing of images allows for the detailed examination of samples using various light microscopes. While there has been significant progress in this field, there remains potential to enhance aspects such as image contrast and resolution. Now, a new computational model, based on an advanced deep learning architecture, offers faster processing times while achieving or surpassing the image quality of traditional methods.

The model, called Multi-Stage Residual-BCR Net (m-rBCR), was specifically developed for microscopy images by researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR, Dresden, German) and the Max Delbrück Center for Molecular Medicine (Berlin, Germany). It introduces a novel approach to image processing using deconvolution, a method aimed at improving the contrast and resolution of digital images captured by optical microscopes, including widefield, confocal, or transmission types. Deconvolution addresses image blur, which is a type of distortion caused by the optical system, and it can be performed in two main ways: explicit deconvolution and deep learning-based deconvolution.

Explicit deconvolution techniques rely on the concept of the point spread function (PSF), which describes how light from a point source is scattered by the optical system, creating a three-dimensional diffraction pattern. This spreading causes out-of-focus light to contribute to blur in a recorded image. By knowing the PSF of a system, the blur can be mathematically removed, producing a clearer representation of the original image. However, PSF-based deconvolution is limited by the difficulty in obtaining accurate or precise PSF data for certain systems. Blind deconvolution methods, where the PSF is estimated from the image itself, have been developed but still present significant challenges and have made limited progress.

To address this issue, the research team has applied "inverse problem-solving" techniques, which have proven effective in microscopy. Inverse problems involve determining the underlying factors that lead to certain observed results. Solving such problems typically requires large amounts of data and advanced deep learning algorithms. Like explicit deconvolution, the goal is to achieve higher-resolution or better-quality images. For their approach, presented at the ECCV, the team used a physics-informed neural network called m-rBCR. In image processing, there are two basic approaches: working with the spatial representation of an image or its frequency representation, the latter of which requires transforming the spatial data. Each method has its advantages, and the majority of deep learning models operate on the spatial domain, which works well for general photographs. However, microscopy images, particularly those from fluorescence microscopy, are often monochromatic and typically feature specific light sources against a dark background.

To address the unique challenges of microscopy images, m-rBCR begins with the frequency representation. This approach enables more meaningful optical data representations and allows the model to solve the deconvolution task with far fewer parameters compared to other deep learning models. The team validated the m-rBCR model across four different datasets—two simulated and two real microscopy datasets. It demonstrated high performance with significantly fewer training parameters and faster processing times than current deep learning models, while also outperforming explicit deconvolution methods.

“This new architecture is leveraging a neglected way to learn representations beyond the classic convolutional neural network approaches,” said co-author Prof. Misha Kudryashev, Leader of the “In situ Structural Biology” group of the Max Delbrück Center for Molecular Medicine. “Our model significantly reduces potentially redundant parameters. As the results show, this is not accompanied by a loss of performance. The model is explicitly suitable for microscopy images and, having a lightweight architecture, it is challenging the trend of ever-bigger models that require ever more computing power.”

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Turnkey Packaging Solution
HLX
New
Adenovirus Test
S3334E ADV Adenovirus Kit
New
Autoimmune Disease Test
Anti-Centromere B ELISA Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The lateral flow test could detect prostate cancer more quickly and with greater accuracy (Photo courtesy of Valley Diagnostics)

Groundbreaking Test Could Detect Prostate Cancer Within Minutes Via Urine Sample

In the UK, over 52,000 men are diagnosed with prostate cancer annually, with up to one-quarter of these cases identified at a later stage, requiring more intensive treatments. The cost to the NHS for these... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.