We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tumor Cells Profiled by Microscopic Imaging

By LabMedica International staff writers
Posted on 22 May 2012
Print article
A hyperspectral microscopic imaging (HMI) platform can precisely identify and quantify 10 molecular markers in individual cancer cells in a single pass.

Improved capture of circulating tumor cells and hyperspectral microscopic imaging facilitate identification and quantification of many molecular markers in cells at different times, recognition of coexpression of markers, and, thereby, allow noninvasive diagnosis and improved targeted therapy.

Scientists at the University of Texas Southwestern Medical Center (Dallas, TX, USA) analyzed normal and tumor cells using an HMI platform. They balanced the intensity of 10 fluorochromes bound to 10 different antibodies, each specific to a particular tumor marker, so that the intensity of each fluorochrome can be discerned from overlapping emissions.

By using two touch preparations from each primary breast cancer, the average molecular marker intensities of 25 tumor cells gave a representative molecular signature for the tumor despite some cellular heterogeneity. The HMI system is composed of an Olympus IX-70 inverted microscope (Olympus; Center Valley, PA, USA), SP-500i imaging spectrograph (Acton Research Corporation; Acton, MA, USA), Quantix KAF1600 charge-coupled device (CCD) camera (Photometrics, Tucson, AZ, USA), and X-Y motorized stage (Ludl Electronic Products Ltd.; Hawthorne, NY, USA).

The team quantified 10 molecular markers in 25 cells from five different cancer cell lines and two normal breast epithelial cell lines, providing 1,700 measurements of tumor marker intensity. The intensities determined by the HMI correlate well with the conventional analysis by experts in cellular pathology. Because additional multiplexes can be developed using the same fluorochromes but different antibodies, this analysis allows quantification of many molecular markers on a population of tumor cells. HMI can be automated completely, and eventually, it could allow the standardization of protein biomarkers and improve reproducibility among clinical pathology laboratories.

The authors concluded that conventional pathologic examination together with current fluorescence microscopy is insufficient to obtain the level of molecular profiling necessary to optimize new treatment regimens. However, HMI analysis of touch preparations of tumor tissue and circulating tumor cells represents a major step forward because a large number of molecular markers can be detected and their expression precisely quantified in individual tumor cells. The study was published in the May 2012 issue of Translational Research.

Related Links:

University of Texas Southwestern Medical Center
Olympus
Acton Research Corporation


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Coagulation Analyzer
CS-2400

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.