We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Device Selects Cancer Cells Based on Chemotactic Phenotype

By LabMedica International staff writers
Posted on 24 Jun 2014
Print article
Image: Schematic design of the microfluidic device that sorts for aggressive cancer cells (Photo courtesy of Reinhart-King laboratory).
Image: Schematic design of the microfluidic device that sorts for aggressive cancer cells (Photo courtesy of Reinhart-King laboratory).
A new approach has been invented for screening for aggressive cancer cells, using a microfluidic device that isolates only the most aggressive, metastatic cell.

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells, but the problem is that it is easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Scientists at Cornell University (Ithaca, NY, USA) first sorted cells with the most aggressive behavior, and analyze only those cells for molecular changes. Their innovation was a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

In the search for biomarkers of metastasis, attention has been largely placed on ensemble-averaged measurements that screen for molecules or genes. However, individual molecular changes do not always result in disease, and population-based measurements can mask the molecular signatures of the cells responsible for disease.

For their proof-of-concept, the investigators screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis. The innovative device selects for cells based on chemotactic behavior rather than based on molecular differences, enabling the most aggressive cells to be studied independently from the heterogeneous population.

Cynthia A. Reinhart-King, PhD, an associate professor of biomedical engineering and senior author of the study said, “The approach we have taken is a reverse approach from what is conventionally done. Instead of looking at what molecules are being expressed by the tumor, we are looking for the phenotype, that is, the behavior of individual cells first. Then we can determine what molecules are causing that behavior.”

Prof. Reinhart-King added, “The thing we are most excited about, in addition to the physical device, is the conceptual framework we're using by trying to shift gears and screen for cells that are causing the worst parts of the disease. The device could also be used in other applications of tissue engineering, inflammation and wound healing.”

The study was published on May 19, 2014, in the journal Technology.

Related Links:

Cornell University


New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Urine Analyzer
URIT-180
New
3-Position Stirrer
ST-200 and SHP-200 Series

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.