We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Device Selects Cancer Cells Based on Chemotactic Phenotype

By LabMedica International staff writers
Posted on 24 Jun 2014
Print article
Image: Schematic design of the microfluidic device that sorts for aggressive cancer cells (Photo courtesy of Reinhart-King laboratory).
Image: Schematic design of the microfluidic device that sorts for aggressive cancer cells (Photo courtesy of Reinhart-King laboratory).
A new approach has been invented for screening for aggressive cancer cells, using a microfluidic device that isolates only the most aggressive, metastatic cell.

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells, but the problem is that it is easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Scientists at Cornell University (Ithaca, NY, USA) first sorted cells with the most aggressive behavior, and analyze only those cells for molecular changes. Their innovation was a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

In the search for biomarkers of metastasis, attention has been largely placed on ensemble-averaged measurements that screen for molecules or genes. However, individual molecular changes do not always result in disease, and population-based measurements can mask the molecular signatures of the cells responsible for disease.

For their proof-of-concept, the investigators screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis. The innovative device selects for cells based on chemotactic behavior rather than based on molecular differences, enabling the most aggressive cells to be studied independently from the heterogeneous population.

Cynthia A. Reinhart-King, PhD, an associate professor of biomedical engineering and senior author of the study said, “The approach we have taken is a reverse approach from what is conventionally done. Instead of looking at what molecules are being expressed by the tumor, we are looking for the phenotype, that is, the behavior of individual cells first. Then we can determine what molecules are causing that behavior.”

Prof. Reinhart-King added, “The thing we are most excited about, in addition to the physical device, is the conceptual framework we're using by trying to shift gears and screen for cells that are causing the worst parts of the disease. The device could also be used in other applications of tissue engineering, inflammation and wound healing.”

The study was published on May 19, 2014, in the journal Technology.

Related Links:

Cornell University


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Tabletop Centrifuge
Mikro 185
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.