We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Analysis of Circulating Free DNA May Replace Tumor Biopsy for Detection of Non-Small-Cell Lung Cancer

By LabMedica International staff writers
Posted on 10 Mar 2015
Print article
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
A recent paper showed that analysis of circulating free DNA (cfDNA) in blood samples could replace biopsy as a means for detecting patients with advanced non-small-cell lung cancer (NSCLC) that was distinguished by oncogenic epidermal growth factor receptor (EGFR) mutations.

This study was an extension of the 2007-2011 EURTAC (EURopean TArceva vs. Chemotherapy) trial. EURTAC demonstrated the efficacy of erlotinib (Tarceva) compared with standard chemotherapy for the first-line treatment of European patients with advanced NSCLC with oncogenic EGFR mutations (exon 19 deletion or L858R mutations in exon 21) in tumor tissue.

Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that specifically targets the EGFR tyrosine kinase, which is highly expressed and occasionally mutated in various forms of cancer. It binds in a reversible fashion to the adenosine triphosphate (ATP) binding site of the receptor. For the signal to be transmitted, two EGFR molecules need to come together to form a homodimer. These then use the molecule of ATP to trans-phosphorylate each other on tyrosine residues, which generates phosphotyrosine residues, recruiting the phosphotyrosine-binding proteins to EGFR to assemble protein complexes that transduce signal cascades to the nucleus or activate other cellular biochemical processes. By inhibiting the ATP, formation of phosphotyrosine residues in EGFR is not possible and the signal cascades are not initiated.

In the current study researchers associated with the Spanish Lung Cancer Group examined the feasibility of using circulating free DNA (cfDNA) from blood samples of patients with advanced non-small-cell lung cancer as a replacement for tumor biopsies. To this end they used a novel peptide nucleic acid (PNA)–mediated 5´ nuclease real-time polymerase chain reaction (PCR) (TaqMan) assay to examine EGFR mutations in cfDNA isolated from 97 baseline blood samples obtained from patients that had participated in the EURTAC trial.

Results revealed that cfDNA EGFR mutations were detected in 76 of 97 samples (78%) from the patients. Median overall survival was shorter in patients with the L858R mutation in cfDNA than in those with the exon 19 deletion (13.7 versus 30 months). For the 76 patients with EGFR mutations in cfDNA, only erlotinib treatment was an independent predictor of longer disease progression-free survival.

Senior author Dr. Rafael Rosell, professor of medical oncology at the Hospital Germans Trias I Pujol (Badalona, Spain) said, "Testing of tumor tissue remains the recommended method for detecting the presence of oncogenic EGFR mutations; however, the amount of tumor tissue obtained by biopsy is often insufficient, especially in advanced NSCLC, raising the question of whether cfDNA may be used as a surrogate liquid biopsy for the noninvasive assessment of EGFR mutations."

The study was published in the February 26, 2015, online edition of JAMA Oncology.

Related Links:

Hospital Germans Trias i Pujol


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.