We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Test Accurately Profiles Brain Tumor Genetics

By LabMedica International staff writers
Posted on 09 Feb 2016
Print article
Image: Histopathology of a brain tumor called oligodendroglioma diagnosed by the highly cellular lesion composed of cells resembling fried eggs with distinct cell borders moderate-to-marked nuclear atypia (Photo courtesy of Nephron).
Image: Histopathology of a brain tumor called oligodendroglioma diagnosed by the highly cellular lesion composed of cells resembling fried eggs with distinct cell borders moderate-to-marked nuclear atypia (Photo courtesy of Nephron).
Brain tumors can be rapidly and accurately profiled with a next-generation, gene-sequencing test recently developed. The test, called GlioSeq, is now being used by oncologists to help guide treatment planning of brain cancers.

Historically, the diagnosis of central nervous system (CNS) tumors has been based primarily on histopathologic features. However, patients with morphologically identical tumors may experience different clinical outcomes and responses to treatment because the underlying genetic characteristics of the tumors differ.

Scientists at the University of Pittsburgh Schools of the Health Sciences (PA, USA) and their colleagues used GlioSeq, a next-generation, gene-sequencing assay, to test 54 adult and pediatric brain tumor samples for genetic abnormalities, including point mutations, gene fusions, and small gene insertions and deletions that had already been characterized by other means. They used next-generation sequencing to simultaneously identify all previously known alterations, as well as many additional genetic markers in these tumors. This provided important information on classification of these tumors, and on possible new targets for therapy.

The teams identified 30 genes with genetic alterations repeatedly found in CNS tumors and designed custom DNA primer pools to generate libraries and sequence more than 1,360 CNS tumor-related hot spots of more than13,000 all cancer hot spots). The GlioSeq performance was evaluated in 54 CNS tumor specimens collected in 2012–2015, including 28 formalin-fixed, paraffin-embedded (FFPE) and 26 snap-frozen tissues. DNA library preparation and sequencing were successful in 54 of 54 (100%) specimens tested. The investigators compared the GlioSeq cost of reagents with the cost of reagents using conventional techniques such as Sanger sequencing, reverse transcription polymerase chain reaction (RT-PCR), and single nucleotide polymorphism array, that are needed to detect all types of genetic alterations and determined that conventional methods would cost 15 times more than GlioSeq analysis.

Frank S. Lieberman, MD, a professor of neurology, neurosurgery and medical oncology and co-author of the study said, “This test can help guide the physician and the patient in planning treatment, since the molecular information allows us to more precisely characterize tumors and more confidently predict survival and response to therapy. In addition, Glioseq facilitates the identification of clinical trial options with the appropriate molecular targets, as well as cases in which molecularly targeted drugs are available.” The study was published on December 17, 2015, in the journal Neuro-Oncology.

Related Links:

University of Pittsburgh Schools of the Health Sciences


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
PSA Test
Human Semen Rapid Test
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.