We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multiple Diseases Detected via DNA Released from Dying Cells

By LabMedica International staff writers
Posted on 30 Mar 2016
Print article
Image: Schematic diagram of circulating methylated cell free DNA (Photo courtesy of Huntsman Cancer Institute).
Image: Schematic diagram of circulating methylated cell free DNA (Photo courtesy of Huntsman Cancer Institute).
A blood test has been developed that can detect multiple pathologies, including diabetes, cancer, traumatic injury and neurodegeneration, in a highly sensitive and specific manner. The novel method infers cell death in specific tissue from the methylation patterns of circulating DNA that is released by dying cells.

Cell death is a central feature of human biology in health and disease. It can signify the early stages of pathology; such as a developing tumor or the beginning of an autoimmune or neurodegenerative disease, mark disease progression, reflects the success of identify unintended toxic effects of treatment and more. However, to date, it is not possible to measure cell death in specific human tissues noninvasively.

An international team of scientists led by those at the Hebrew University-Hadassah Medical School (Jerusalem, Israel) developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cell free DNA (cfDNA). They interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. They isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, polymerase chain reaction (PCR)-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest.

They were able to detect evidence for pancreatic beta-cell death in the blood of patients with new-onset type 1 diabetes, oligodendrocyte death in patients with relapsing multiple sclerosis, brain cell death in patients after traumatic or ischemic brain damage, and exocrine pancreas cell death in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrated that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

Ruth Shemer, PhD, a DNA methylation expert and one of the lead authors of the study, said, “Our work demonstrates that the tissue origins of circulating DNA can be measured in humans. This represents a new method for sensitive detection of cell death in specific tissues, and an exciting approach for diagnostic medicine.” The study was published on March 14, 2016, in the journal Proceedings of National Academy of Sciences of the United States of America (PNAS).

Related Links:

Hebrew University-Hadassah Medical School


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Hepatitis C Virus Test
HCV - I521
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.