We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Blood Test Engineered to Detect Tumors Early

By LabMedica International staff writers
Posted on 02 May 2018
Print article
Image: A diagram of the microfluidic device that uses magnetic particles and wavy-herringbone design to capture and release circulating tumor cells (Photo courtesy of Lehigh University).
Image: A diagram of the microfluidic device that uses magnetic particles and wavy-herringbone design to capture and release circulating tumor cells (Photo courtesy of Lehigh University).
A new innovative microfluidic device has been developed that uses magnetic particles and wavy-herringbone design to capture and release circulating tumor cells (CTC) with a high capture efficiency rate at different tumor cell concentrations.

The microfluidic device achieves two key standards by which the success of CTC devices is measured: high capture efficiency and high selectivity. Capture efficiency refers to the percentage of CTCs that the device collects. Selectivity measures how well it rejects unwanted cells, such as red and white blood cells.

Scientists at Lehigh University (Bethlehem, PA, USA) designed a device to create passive turbulence and increase the possibility of tumor cells colliding with the device wall. The rectangular chip, which is less than a few square centimeters and using as little as a few milliliters of blood, is made of the polymer PDMS. The chip's key feature is a tiny flow channel on a hierarchically designed pad that is optimized to capture tumor cells from the blood flowing across it.

Under an external magnetic field, magnetic particles (MPs) coated with anti-epithelial cell adhesion molecules (EpCAM) against a tumor cell surface protein (EpCAM) were immobilized over the wavy-herringbone (wavy-HB) surface to capture tumor cells. After removing the magnetic field, the captured cells with surplus MPs were released from the device and collected; thus, these cells could be re-cultured for further analysis.

Under optimized conditions, the capture efficiency of the tumor cells can be as high as 92% ± 2.8%. Capture experiments were also performed on whole blood samples, and the capture efficiency was in a high range of 81% to 95%, at different tumor cell concentrations. The authors concluded that such a method can potentially be used for CTC sorting from patient blood samples, CTC concentration monitoring, therapeutic guidance and drug dosage choice, and further study of tumors, such as drug screening and tumor mutations.

Yaling Liu, PhD, an associate professor and the senior author of the study, said, “With metastatic cancers accounting for around 90% of deaths from solid tumors, the hope is that one day a device that can enable the analysis of single tumor cells circulating in the blood could make a big difference in early diagnosis, detection and monitoring of numerous types of cancer, without invasive biopsies.” The study was presented April 18, 2018, at Royal Academy of Science International Trust’s The Future of Medicine conference held in Istanbul, Turkey.

Related Links:
Lehigh University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.