We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Minimal Residual Disease Test Predicts Oligometastatic CRC Patient Outcomes

By LabMedica International staff writers
Posted on 06 Aug 2021
Print article
Signatera assay used for the detection of molecular residual disease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases (Photo courtesy of Natera)
Signatera assay used for the detection of molecular residual disease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases (Photo courtesy of Natera)
Colorectal cancer (CRC) is the fourth most common cancer and the second-leading cause of cancer-related death in the USA. Approximately 15%-25% of patients present with metastatic disease upon diagnosis, and approximately 50% of patients with early-stage disease develop metastases.

The current standard of care for CRC involves routine patient checkups, periodic computed tomography scans, and monitoring of carcinoembryonic antigen (CEA) levels. Several studies have indicated the clinical utility of circulating tumor DNA (ctDNA) for Minimal Residual Disease (MRD) assessment, monitoring recurrence, and treatment response in patients with CRC.

Oncologists at the Veneto Institute of Oncology (Padua, Italy) and their associates analyzed a cohort of 112 patients with metastatic CRC (mCRC) who had undergone metastatic resection with curative intent as part of a clinical trial. The study evaluated the prognostic value of ctDNA, correlating MRD status post-surgery with clinical outcomes by using a personalized and tumor-informed ctDNA assay (bespoke multiple PCR, next-generation sequencing assay).

The scientists performed whole-exome sequencing on formalin fixed and paraffin embedded tumor tissue along with matched normal blood samples. On analyzing the sequencing results, a set of 16 patient-specific somatic clonal single nucleotide variants (SNVs) were selected for multiplex PCR (mPCR). The Signatera personalized mPCR next-generation sequencing (NGS) assay (Natera, Austin, TX. USA) was used for detecting minimal or MRD and disease progression in the postsurgical setting for patients with metastatic colorectal cancer. Samples were also prepared for ddPCR (QX200 ddPCR system; Bio-Rad, Berkeley, CA, USA).

Signatera testing identified 61 patients, a little more than half the cohort, as MRD-positive at either the first testing time point after surgery or a second follow-up test. Of these individuals, nearly 97% went on to have progressive disease despite their treatment. To compare Signatera to ddPCR, the group analyzed a subset of 27 patients with KRAS mutations. Concordance between the approaches was only 55%, with the 12 discordant cases representing instances where Signatera was positive and ddPCR was negative. In addition, among these 12 individuals, 11 developed disease progression, suggesting greater sensitivity and accuracy for the personalized Signatera technology. CEA, a highly studied proteomic cancer biomarker, also failed to predict patient outcomes with statistical significance.

Fotios Loupakis, MD, PhD, an Oncologist and first author of the study, said, “Through this study, we are able to show that a personalized ctDNA test is a sensitive prognostic biomarker that can potentially be used to guide treatment decisions for patients with oligometastatic colorectal cancer.”

The authors concluded that their present work supports the continuous expansion of the number of clinical studies in patients with mCRC using personalized ctDNA-based MRD analysis and provides direct evidence of the predictive and prognostic value of ctDNA, which could help clinicians with real numbers to design their clinical studies and support therapeutic decisions in the adjuvant setting. The study was published on July 21, 2021 in the journal JCO Precision Oncology.

Related Links:

Veneto Institute of Oncology
Natera
Bio-Rad


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.