We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Microscopy Technique Comes Closer to Use in Clinical Diagnostics

By LabMedica International staff writers
Posted on 14 Mar 2023
Print article
Image: New research is set to bring Brillouin microscopy closer to widespread use in diagnostic medicine (Photo courtesy of Wayne State University)
Image: New research is set to bring Brillouin microscopy closer to widespread use in diagnostic medicine (Photo courtesy of Wayne State University)

Diagnostic imaging plays a crucial role in aiding physicians and researchers in understanding internal body structures, thus improving clinical analysis and medical intervention. Scientists continually explore new avenues to utilize imaging technologies to gain insight into human health. A pioneering imaging method called Brillouin microscopy enables the mapping of cell and tissue stiffness, often linked to early symptoms of ailments such as cancer and Alzheimer's. This method is distinct from conventional imaging modalities such as confocal fluorescence microscopy, as it allows label-free and non-contact acquisition of key mechanical information like viscosity and stiffness of biological specimens. Now, researchers are striving to refine Brillouin microscopy, which can answer many important questions in biophysics and mechanobiology.

Brillouin microscopy, an optical imaging method rooted in Brillouin light scattering (BLS), was first introduced by French physicist Léon Brillouin in 1922. When light interacts with a substance, thermal fluctuations or molecular vibrations within the material cause the light to scatter resulting in BLS. These vibrations can be influenced by various factors such as compression, water content, heat, or material stiffness. Among these factors, stiffness is incredibly valuable for the diagnostic application of Brillouin microscopy. Changes in cell stiffness, often linked to the progression of ailments like cancer metastasis, are challenging to measure since cells are microscopic and situated in very delicate tissues.

In conventional approaches, prepared cells are measured on a petri dish or other rigid substrates. However, Brillouin microscopy relies solely on a laser beam to investigate the mechanical properties, enabling measurement when cells are in their physiological conditions. As no physical interaction is required, Brillouin technology is less invasive and more convenient. The technology is important for understanding embryonic tissue development, particularly to gain a better understanding of birth-related diseases and disorders.

Researchers at Wayne State University (Detroit, MI, USA) examined the use of dual line-scanning Brillouin microscopy (dLSBM) to overcome two significant limitations - acquisition speed and irradiation doses - that hinder its widespread usage in biomedicine. The application of dLSBM yielded 50 to 100 times faster speeds than its counterpart, with a reduction of 80 times light irradiation levels for 2D and 3D mechanical mapping.

“With this innovation, we can acquire one mechanical image of cell clusters in a few minutes,” said Jitao Zhang, assistant professor of biomedical engineering (BME) at Wayne State University. “This improved acquisition speed is important because it allows us to investigate details of cell behaviors in almost real time.”

“Due to the 3D structure of an embryo, traditional contact-based techniques encounter big challenges for in vivo measurement,” added Zhang. “Since Brillouin microscopy works in a non-contact manner, it sometimes becomes the only available choice.”

Related Links:
Wayne State University

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.