We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Robotic Platform Enables More Accurate Diagnosis of Cancer Cells

By LabMedica International staff writers
Posted on 25 Oct 2023
Print article
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)

For more than a century, the field of histology, which falls under pathology and focuses on changes in tissue, has relied on an old-school method. This involves slicing tissue samples into extremely thin sections—each about seven times thinner than a human hair—and then examining them for any abnormal changes under a microscope. The downside of this traditional technique is that it leads to misdiagnosis in about one out of every six people, often missing cancer cells. Now, scientists have integrated biomedical technology with mechanical engineering to create a robotic system that not only diagnoses cancer more precisely but also offers three-dimensional insights into the spatial arrangement of cells.

Researchers from ETH Zurich (Zurich, Switzerland) and the University of Zurich (Zurich, Switzerland) are working on this robotic platform designed to improve the accuracy of cancer diagnosis by rapidly quantifying tissue samples in their entirety. The procedure involves four stages. First, the tissue sample is automatically made transparent. Second, any unusual cells are quickly stained or colored. The third phase consists of generating a 3D image that maps out the cancer cells; the technology for this is already available. The last phase involves analyzing the tissue using 3D imaging software and training algorithms. This novel approach eliminates the need for labor-intensive preparation and slicing of tissue samples; instead, the entire tissue sample—like a lymph node—is preserved and fully examined. The 3D digital images showing the marked cells can be accessed online whenever needed.

Currently, the robot prototype is functional in the lab and can maneuver samples as required. However, it's not yet completely market-ready. While the team can provide preliminary services like automatically rendering sent-in tissue samples transparent and generating labeled 3D images swiftly, the software still needs fine-tuning. The researchers aim to commercialize this robotic system, offering research laboratories and healthcare facilities a dependable and effective tool that could revolutionize the way cancer diagnosis is conducted in the digital age.

Related Links:
ETH Zurich 
University of Zurich 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Centromere B Assay
Centromere B Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.