We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanopore Sequencing Cuts Tumor Analysis Times and Costs, Finds Study

By LabMedica International staff writers
Posted on 11 Dec 2023
Print article
Image: Nanopore sequencing makes analysis of copy number variations quicker, cheaper, and less complex (Photo courtesy of Oxford Nanopore)
Image: Nanopore sequencing makes analysis of copy number variations quicker, cheaper, and less complex (Photo courtesy of Oxford Nanopore)

Copy number variations (CNVs), which activate oncogenes and inactivate tumor suppressor genes, play a crucial role in the development and progression of cancers. As such, CNV analysis is a vital component of tumor grading and diagnosis. Traditionally, this analysis relies on nucleotide hybridization and next-generation sequencing, methods confined to high-complexity centralized laboratories and requiring several days to complete. A more rapid, cost-effective, and straightforward approach to CNV analysis could significantly enhance clinical decision-making, refine surgical planning, and facilitate the identification of potential molecular therapies within the timeframe of surgical procedures. Researchers have now identified nanopore sequencing as a method to refine CNV analysis.

A study conducted by researchers at Dartmouth-Hitchcock Medical Center (DHMC, Lebanon, NH, USA) has found nanopore sequencing to be a more efficient means for CNV analysis. They used Oxford Nanopore’s MinION device, which offers real-time interpretation of long-read nucleotide sequences. To adapt this technology for CNV detection, the team employed a technique involving the random analysis of linked DNA fragments, which allows for the identification of multiple mappable DNA fragments within a single sequencing read.

The study involved analyzing 26 malignant brain tumors using this method. The nanopore sequencing approach successfully detected the same genomic alterations and amplifications as those identified through clinically validated next-generation sequencing and chromosomal microarray analyses. This method also concurrently facilitates tumor methylation classification without necessitating additional tissue preparation, as promoter hypomethylation was observed in all detected amplified oncogenes. A patent application for this novel approach, named irreversible Sticking Compatible Overhang to Reconstruct DNA (iSCORED), is currently pending. The researchers view this accelerated method of CNV analysis as a significant step forward in reducing the time required to identify patients who could benefit from treatment with molecular-targeted therapies.

“The low cost per sample, a mere USD 125, and the ease of setting up the infrastructure with a budget of USD 6,000-8,000 for MinION and USD 14,000-16,000 for PromethION make it an economical option for clinical applications,” stated the researchers. “The unmatched turnaround time of 120-140 minutes further positions our method as a robust and invaluable tool for widespread implementation in clinical settings.”

Related Links:
DHMC
Oxford Nanopore

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Repeater Pipette
CAPPR10 Repeater Pipette
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.