Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Image-Based AI Shows Promise for Parasite Detection in Digitized Stool Samples

By LabMedica International staff writers
Posted on 17 Apr 2024

Infections from soil-transmitted helminths (STHs), commonly known as intestinal parasitic worms, are among the most widespread neglected tropical diseases and impose a significant health burden in low- and middle-income countries, particularly among school-aged children. These infections often lead to chronic health issues that can cause disability, social stigma, and for their substantial economic impacts on communities. STHs are notorious role in nutrient loss, which can contribute to neurocognitive impairments, stunted growth and development, and persistent fatigue in affected children. Additionally, these parasites are a major cause of morbidity and complications during pregnancy. The standard diagnostic method for STHs involves manual microscopy, which requires up to 10 minutes per slide and is hindered by a lack of skilled professionals and access to necessary equipment and lab infrastructure in highly affected regions. There is a pressing need for improved diagnostic techniques, particularly for detecting infections of mild intensity, to effectively manage and aim for the elimination of STHs as a public health concern. Now, an artificial intelligence (AI) microscopy system has been shown to accurately identify intestinal worm infections, especially light-intensity infections that could be overlooked when using manual microscopy.

The new study by a multi-institutional team of specialists from the Karolinska Institute (Stockholm, Sweden) and University of Helsinki (Helsinki, Finland) marked the first clinical trial of the system to detect worm infections in a remote setting with whole-slide images. The study was carried out in rural areas of Kwale County, Kenya, where there is a high prevalence of STHs among children. During the study, 1,335 school-aged children were screened using the deep learning-based system for parasitic worm egg detection, with results compared against those obtained through expert manual microscopy.

The analysis of digitally scanned stool samples using the deep learning system demonstrated high diagnostic accuracy in identifying three common types of parasitic worms: Ascaris lumbricoides (giant roundworm), Trichuris trichiura (whipworm), and hookworm (Ancylostoma duodenale or Necator americanus). The AI was able to detect between 76% and 92% of the infections identified by trained lab technicians, depending on the type of worm. Notably, the AI system identified a significant number of light-intensity infections that were missed in manual microscopy evaluations. In fact, in 79 samples (10% of the total), which were initially determined to be negative by manual microscopy, the AI system detected the presence of parasitic worm eggs. Moreover, the AI system provides a digital record of each sample that can be preserved for further analysis, offering a significant advantage over human samples, which typically dry out within hours and become more challenging for further analysis.

“We have shown that we can use our testing in a resource-limited setting and get high accuracy. Our method was especially efficient in light-intensity infections,” said Principal Investigator Professor Johan Lundin, MD, PhD, from the Karolinska Institutet. “With AI, once our sample is digitised, it takes just a few second and looks at the entire sample and is able to very accurately find the parasite eggs.”

Related Links:
Karolinska Institute
University of Helsinki

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.