We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Biology Lab Tools Speed Up Tumor Dissection

By LabMedica International staff writers
Posted on 12 Sep 2024
Print article
Image: Scanning microscopy images of the microDicer and microGrate (Photo courtesy of Seth Cordts and Saisneha Koppaka)
Image: Scanning microscopy images of the microDicer and microGrate (Photo courtesy of Seth Cordts and Saisneha Koppaka)

As intriguing as working in a modern biology lab can be, much of the time, it involves repetitive, detailed tasks that need to be completed before the actual research begins. For instance, cancer researchers today can test multiple cancer therapies, including immunotherapies, on hundreds or even thousands of small, lab-grown tumor samples called organoids. However, creating organoids often requires researchers to manually mince a fresh tumor into tiny pieces using scissors, cutting the specimen into submillimeter sizes. This tedious and time-consuming task is usually carried out by highly skilled – and often overqualified – graduate students or research scientists. Fortunately, those days may be coming to an end as researchers have developed two innovative tools to streamline the precision cutting of tumor samples into submillimeter-scale organoids.

Much like kitchen gadgets used to dice vegetables or grate cheese, the microDicer (µDicer) and microGrater (µGrater), developed by scientists at the Stanford School of Engineering (Stanford, CA, USA), promise to improve both the consistency and quality of samples. This is crucial, as it directly influences the accuracy of downstream experiments, such as drug response testing. In cancer immunotherapy research, preserving the spatial relationships between tumor cells and infiltrating immune cells is key to accurately testing therapies. These new tools allow researchers to more efficiently create organoids that retain these vital cellular relationships. As detailed in the journal Microsystems & Nanoengineering, which features the study on the microDicer and microGrater, the microDicer’s blades are made using micromachining techniques from the semiconductor industry. The silicon blades are etched into a reactive plasma, forming a honeycomb-like mesh with sharp edges. Researchers use the microDicer by shaving thin tissue layers and pressing them through this honeycomb mesh, creating precise, uniform tumor samples.

In contrast, the microGrater features an array of blades shaped like rounded rectangles, each slightly longer than half a millimeter. The beveled edges of these rectangles act as blades, shaving off precise organoids as the tissue is moved across the grater. The tumors being studied are grown in lab mice, serving as a reliable model for human tumors. Ultimately, the aim is to develop personalized cancer therapies by collecting samples from individual patients and testing which immunotherapies will be most effective for them. These new tools standardize the organoid preparation process in ways manual cutting cannot, potentially speeding up regulatory approvals, such as from the FDA, for broader clinical applications.

“These new tools will speed up the manual lab work, but their utility goes beyond that obvious advantage,” said Sindy Tang, an associate professor of mechanical engineering and senior author of the study. “These tools produce uniform-sized organoids and the blades can be varied to whatever size the researcher requires.”

Related Links:
Stanford University
Stanford Medicine

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Electroporation System
Gibco CTS Xenon
New
Silver Member
POC Helicobacter Pylori Test Kit
Hepy Urease Test

Print article

Channels

Microbiology

view channel
Image: The test covers the most important bacterial pathogens across all age groups with a single cartridge (Photo courtesy of BHCS)

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.