We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Different Bacteria Cultures Maintained in Microfluidic System

By LabMedica International staff writers
Posted on 13 Aug 2013
Print article
Image: Microfluidic system for multiple bacterial cultures (Photo courtesy of Polish Institute of Physical Chemistry).
Image: Microfluidic system for multiple bacterial cultures (Photo courtesy of Polish Institute of Physical Chemistry).
A fabricated microfluidic device allows hundreds of different bacteria cultures to be maintained simultaneously.

The system allows for the merging, transporting and splitting of microdroplets where strictly controlled chemical reactions and the cultivation of bacterial colonies can be performed.

A group of scientists at the Institute of Physical Chemistry (Warsaw, Poland) engineered the microfluidic systems from polymer plates that correspond to the size of a credit card. Inside the system, a carrier fluid, mostly oil, carries microdroplets containing chemicals, flows laminarly through tiny channels of diameters in the range of tenths or hundredths of a millimeter. In this single microfluidic system thousands of different chemical reactions can be carried out during a day.

The microsystem is composed of two branches of microchannels forming densely arranged zigzags. A few hundred droplets can circulate in the microchannels, at a distance of about one centimeter from each other. The microdroplets move in a pendular movement from one branch to the other. Each droplet circulating within the microfluidic system has its own unique identifier, assigned by the optoelectronic system. It allows the scientist to monitor at any time what operations have been carried out on each microdroplet. A single droplet can include over 100,000 bacteria that are unable to move between the droplets, as the bacteria cannot cross the surface membrane of a microdroplet, and the carrier liquid used to transport microdroplets is not an environment favorable for the life of bacteria.

Piotr Garstecki, PhD, DSc, the lead author, said, “We can transform each microdroplet into a real bioreactor. Therefore, in a single small plate we can have up to several hundreds of bioreactors, with different, controlled concentration of an antibiotic, a different antibiotic or even different bacterial species in each bioreactor.” The paper was published on July 15, 2013, in the journal Angewandte Chemie International Edition.

Related Links:

Polish Institute of Physical Chemistry


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.