We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer

By LabMedica International staff writers
Posted on 16 Dec 2024
Print article
Image: An AI-powered blood test is the first to spot the earliest sign of breast cancer (Photo courtesy of 123RF)
Image: An AI-powered blood test is the first to spot the earliest sign of breast cancer (Photo courtesy of 123RF)

Standard breast cancer tests typically include a physical exam, X-ray or ultrasound scans, and a biopsy to analyze tissue samples. Current early detection strategies often rely on screening based on age or risk factors. Now, a new method promises to enhance early detection and monitoring of breast cancer, potentially leading to a screening test for multiple types of cancer.

Developed by researchers at The University of Edinburgh (Scotland, UK), the new screening method combines laser analysis with artificial intelligence (AI). This innovative approach is the first to detect breast cancer at its earliest stage, known as stage 1a, which is undetectable with current tests. The method uses Raman spectroscopy, a laser analysis technique, paired with machine learning, a form of AI. While similar techniques have been trialed for other cancers, they could only detect disease starting at stage two. The process involves shining a laser into blood plasma from patients, and then analyzing how the light interacts with the blood using a spectrometer. This reveals minute changes in the chemical composition of cells and tissues, which serve as early disease indicators. A machine learning algorithm then interprets the data, identifying patterns and classifying the samples.

In a pilot study with 12 breast cancer patient samples and 12 healthy control samples, the technique identified breast cancer at stage 1a with 98% accuracy. The study, published in Journal of Biophotonics, also demonstrated the method’s ability to distinguish between the four main subtypes of breast cancer with over 90% accuracy. This could enable more personalized and effective treatments. The researchers believe that implementing this as a screening tool could identify more patients at the earliest stages of breast cancer, improving treatment success. They plan to expand the study to include more participants and test early detection for other types of cancer.

“Most deaths from cancer occur following a late-stage diagnosis after symptoms become apparent, so a future screening test for multiple cancer types could find these at a stage where they can be far more easily treated,” said Dr. Andy Downes, of the University of Edinburgh’s School of Engineering, who led the study. “Early diagnosis is key to long-term survival, and we finally have the technology required. We just need to apply it to other cancer types and build up a database, before this can be used as a multi-cancer test.”

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Gold Member
HIV Test
HIV Test - I541
New
Celiac Disease Test
AESKULISA tTg-A New Generation

Print article

Channels

Molecular Diagnostics

view channel
Image: Umbilical cord blood biomarkers may improve preterm infant care (Photo courtesy of Shutterstock)

Umbilical Cord Blood Test Could Identify Preterm Infants at Risk for Medical Complications

Advancements in medical technology and neonatology have significantly improved the care of prematurely born infants. However, these infants still face heightened risks for medical complications, such as... Read more

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.