Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Micropump Developed for Lab-On-A-Chip Disease Diagnosis

By LabMedica International staff writers
Posted on 18 Sep 2014
A reliable, inexpensive, programmable pump is a crucial feature for lab-on-a-chip devices that could make the diagnosis of many global life-threatening diseases easy and affordable.

An acoustofluidic pump powered by a piezoelectric transducer has been developed that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures.

Bioengineers and scientists at The Pennsylvania State University, (University Park, PA, USA) developed the pump which works by oscillating a series of thin sharp-edge structures hundreds of micrometers in length that have been constructed onto the sidewall of a microfluidic channel made of polydimethylsiloxane (PDMS), a widely used polymer. A miniaturized piezoelectric transducer, similar to the kind used in medical ultrasound, is the source of the oscillations.

The acoustofluidic pump was made by bonding a single-layer PDMS channel onto a single glass slide and attaching a piezoelectric transducer (Murata Electronics; Smyrna, GA, USA) adjacent to it using a thin layer of epoxy. To demonstrate the pumping behavior, the PDMS channel was designed to be a rectangular recirculating (in a counter-clockwise direction) channel composed of four portions: left channel, right channel, upper channel, and lower channel. The lower channel, referred to as the pumping region, was designed with 20 tilted sharp-edge structures on its sidewall, 10 on each side, while the other three channels were straight channels without any structures. The piezoelectric transducer, activated by amplified sine wave signals from a function generator (Tektronix; Beaverton, OR, USA) and an amplifier was used to acoustically oscillate the sharp-edge structures to generate acoustic streaming effects.

Tony Jun Huang, PhD, an engineering professor and senior author of the study, said, “Our pump is quite unique. It’s reliable and programmable, with a minimum of hardware, yet highly precise. The flow rates can be tuned across a wide range, from nanoliters per minute to microliters per minute. The permanent equipment for the total lab-on-a-chip system, including off-the-shelf electronics, could cost as little as about USD 25.00 to make, and the disposable chip could cost as little as USD 0.10. Although slightly more expensive than paper-based diagnostics, the system is far more versatile and precise, enabling quantitative analysis of, for example, human immunodeficiency virus (HIV), hepatitis, cancer, infectious diseases, cardiovascular diseases.” The study was published on September 4, 2014, in the journal Lab-on-a-chip.

Related Links:

The Pennsylvania State University
Murata Electronics 
Tektronix  



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV Test
Anti-HIV (1/2) Rapid Test Kit
New
Biological Indicator Vials
BI-O.K.
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.