We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Extraction Technique Prepares Urine Samples for Mass Spectrometry Analysis

By LabMedica International staff writers
Posted on 07 Jun 2015
Print article
Image: The centrifugation step is the key to removing protein biomarkers from urine\'s high salt matrix (Photo courtesy of Clemson University).
Image: The centrifugation step is the key to removing protein biomarkers from urine\'s high salt matrix (Photo courtesy of Clemson University).
Disposable mini-tubes packed with capillary-channeled polymer (C-CP) fibers have been adapted for the rapid extraction of proteins from urine specimens for analysis by MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry).

While mass spectrometry is a powerful tool for biomarker determinations, the high salt content and the matrix of small molecules present in urine has reduced its applicability for urinary diagnosis. To correct this deficiency, investigators at Clemson University (SC, USA) packed micropipette tips with C-CP fibers. These fibers possess a unique geometry that includes eight channels that extend the entire fiber length (which can be miles on a spool). The fibers are nominally an oblong shape with diameters ranging from 35 to 50 micrometers, with the individual channels ranging in size from five to 20 micrometers.

Urine samples were passed through fiber-packed tubes by spinning them in a centrifuge for 30 seconds. Following centrifugation de-ionized water was run through the tubes for one minute to wash off salt and other contaminants. Hydrophobic proteins, which remained bound to the fibers, were extracted for MALDI-MS analysis with appropriate solvents during a 30 second centrifugation step.

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides, and sugars) and large organic molecules (such as polymers, dendrimers, and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI produces far fewer multiply charged ions.

The C-CP fiber method was validated by measuring the urinary proteins beta-2-microglobulin, retinol binding protein, and transferrin. C-CP fiber tips offered several advantages including low materials costs, high throughput, microvolume processing, and the determination of sub-nanogram quantities of analyte; allowing determination of biomarkers that are otherwise undetectable in urine samples.

"You have got almost seawater coming out of you, and I am trying to find something far smaller than a needle in a haystack," said senior author Dr. Ken Marcus, professor of analytical chemistry at Clemson University. "The concentrations of these proteins would be one part in a billion."

The C-CP fiber method for urine sample purification was described in the March 18, 2015, online edition of the journal Proteomics-Clinical Applications.

Related Links:

Clemson University


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.