We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Integrated Device Combines Techniques to Detect Malaria

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: The paper and plastic device combines isothermal amplification and lateral flow to detect malaria (Photo courtesy of Rice University).
Image: The paper and plastic device combines isothermal amplification and lateral flow to detect malaria (Photo courtesy of Rice University).
Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame and produces a product that can be visually detected on a lateral flow dipstick.

Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests.

Bioengineers at Rice University (Houston, TX, USA) developed an integrated device capable of carrying out isothermal amplification using the RPA reaction, post-amplification dilution, and lateral flow detection of the resulting product. The paper and plastic device developed amplified the target using RPA; diluted the resulting product; and detected the product using a lateral flow sandwich assay. In addition, the device transferred the product between the amplification, dilution, and detection modules. A sequence of paper pads loaded with various reagents was used to carry out these functions.

The device is made of simple components, can be assembled by the user and uses a novel slider method to transport reagents through the system. The equipment needed beyond the device itself and the sample to be tested are a hot plate capable of 37 °C, a reusable 25 gram metal weight, the RPA master mix, the running/dilution buffer and pipettes to load these reagents onto the device dilution, running buffer, RPA and sample pads. This device runs the entire assay, including detection, in around an hour and has a limit of detection equivalent to when the assay is run using conventional methods on the bench top. The total run time for the device is 55 minutes, and including the loading and operation of the device, the entire assay can be carried out in about an hour.

The authors concluded that the fabricated device amplified a sequence which is common to the human infectious species of Plasmodium and operated an isothermal amplification reaction which is rapid and has an easy visual readout. A paper and plastic device was also developed which carries out the amplification of the samples, dilutes the product and runs the result on a lateral flow strip. When tested on synthetic targets, a limit of detection of 5 copies/µL (50 total copies) was found, which matches the performance of the same assay run on the bench top. The study was published on November 26, 2015, in the Malaria Journal.

Related Links:

Rice University 


Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.