We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automating Blood Smears Developed for Easier Malaria Diagnosis

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Blood smears are used in diagnosis for a variety of hematological disorders, such as anemia and leukemia. They are also the preferred method of diagnosis of parasitic infections, such as malaria and filariasis in developing world laboratories.

The current “gold standard” for malaria diagnosis is by optical microscopy examination of blood smears. A thin film of the patients’ bloods is fixed onto a microscope slide and stained. The microscopists look at the smear, counting the parasites in various fields of view. These experts can establish the species of malaria and parasite density.

Bioengineers at Cambridge University (Cambridge, UK) collaborating with their colleagues in Tanzania and the UK created a series of devices, which they call “autohaem.” Autohaem devices aim at enabling even non-experts to produce consistent, high quality, thin film blood smears at low cost. The autohaem devices, solves this problem by automating the smearing process so every smear is correct and consistent. The devices come in two varieties, the autohaem smear and the autohaem smear+, the latter of which is fully automated with a motorized smearing mechanism. In tests, inexperienced technicians were able to use the device to produce expert-quality smears.

A key goal of the project was to make the devices accessible to as many people as possible, so the scientists designed their devices to be easy to build, using readily available or 3D-printed components. A pipeline for automated analysis of smear quality was presented and used for device optimization. Red Blood Cells (RBCs), at the typical hematocrit for malaria investigations, are used as the testing media. This pipeline will also be suitable for a more systematic analysis of blood smear preparation, for example, to help with training and evaluation of technicians.

Samuel McDermott, PhD, the senior author of the study, said, “Creating blood smears is a laborious, repetitive task that requires an expert level of skill and manual dexterity. By using automated blood smearing machines, such as autohaem devices, technicians will be able to increase their throughput while maintaining a high enough quality for diagnosis. In some countries, up to 81.5% of blood smears are prepared incorrectly. If a blood smear is prepared incorrectly, when examined under a microscope, the technician will struggle to make a correct diagnosis. Because these smears are often made in a rural clinic and sent to a regional facility for examination, any issues in the smear could cause days of delay.”

The authors concluded that they have developed and presented the autohaem range of devices for automated blood smearing. Autohaem smear is a mechanical device, and autohaem smear+ is an electro-mechanical device. The devices are designed to be sustainable and all the designs and assembly instructions are available under an open source license. The study was published on January 18, 2022, in the journal Review of Scientific Instruments.

Related Links:
Cambridge University

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Entamoeba One Step Card Test
CerTest Entamoeba

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.