We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

By LabMedica International staff writers
Posted on 15 Aug 2023
Print article
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence among women. The multifaceted nature of osteoporosis, influenced by both genetic and environmental factors, increases the risk of bone fractures. Early intervention is vital to reduce the consequences of osteoporosis, yet current diagnostic techniques fall short of enabling early detection of this ailment. Now, researchers have developed a biosensor with the potential to identify those at the highest risk of osteoporosis, using less than a drop of blood.

Dual-energy X-ray absorptiometry, the prevalent method to assess changes in bone mineral density, is not sensitive enough to detect density loss until considerable damage has already been done. A number of genomic studies have found specific genetic variations, referred to as single nucleotide polymorphisms (SNPs), which correlate with a higher osteoporosis risk. Building upon these findings, a research team from Universitat Rovira i Virgili (Tarragona, Spain) set out to create a portable electrochemical device to rapidly detect five such SNPs in finger-prick blood samples, enabling early diagnosis of osteoporosis.

Central to the device is an electrode array housing DNA fragments corresponding to each SNP. The application of lysed whole blood to the array facilitates the binding of any matching DNA sequences with the SNPs. Amplification takes place with the incorporation of ferrocene-labeled recombinase polymerase, facilitating electrochemical detection. This innovative platform enabled the identification of osteoporosis-associated SNPs in 15 human blood samples, with validation successfully done against alternative methods. Elimination of the need to extract DNA from the blood streamlines the analysis, making it rapid (approximately 15 minutes) and cost-effective (less than $0.5 per SNP).

In addition to its rapid results and affordability, the device offers portability and ready accessibility, making it ideally suited for point-of-care scenarios instead of being confined to centralized laboratories. The technology's versatility extends its ability to be adapted for the detection of other SNPs, as demonstrated previously by the researchers in identifying drug resistance in Tuberculosis mycobacterium from sputum and predicting cardiomyopathy risk from blood samples. Although the device does not directly diagnose osteoporosis, it has the potential to assist physicians in identifying individuals who require closer monitoring for the condition.

Related Links:
Universitat Rovira i Virgili

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.