We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cheap, Paper-Based Testing Platform Could Transform Diagnostics

By LabMedica International staff writers
Posted on 16 Oct 2024
Print article
Image: The new diagnostic test system combines a field-effect transistor (above) with a paper-based analytical cartridge (Photo courtesy of 123RF)
Image: The new diagnostic test system combines a field-effect transistor (above) with a paper-based analytical cartridge (Photo courtesy of 123RF)

At-home diagnostic tests, such as pregnancy or COVID tests, utilize paper-based assay technology to identify the presence of target molecules. Although these tests are simple and inexpensive, they primarily provide qualitative results, indicating whether a biomarker is present. In contrast, field-effect transistors (FETs), which were initially created for electronic devices, are capable of detecting the concentrations of biological molecules. Today, they serve as highly sensitive biosensors for real-time biomarker detection. Many experts believe that FETs represent the future of biosensing; however, their commercialization has been limited due to the specific testing conditions required. In a highly complex matrix like blood, FETs often struggle to detect signals from analytes. Researchers have now developed a new diagnostic test system that merges an FET with a cost-effective, paper-based diagnostic test. When paired with machine learning, this system evolves into a novel biosensor that could potentially revolutionize at-home testing and diagnostics.

Developed jointly by researchers at the University of Chicago Pritzker School of Molecular Engineering (PME, Chicago, Il, USA) and UCLA Samueli School of Engineering (Los Angeles, CA, USA), the new kind of testing system integrates an FET with a paper-based analytical cartridge, similar to the technology used in at-home pregnancy and COVID tests. This combination harnesses the high sensitivity of FETs along with the low-cost benefits of paper-based cartridges. The paper fluidic technology, particularly its porous sensing membrane, reduces the need for the complicated, controlled testing environments that FETs typically require. Additionally, it offers a low-cost basis for the system, as each cartridge costs approximately 15 cents.

The integration of deep-learning kinetic analysis further enhances the accuracy and precision of the testing results within the FET. To evaluate the system, the researchers programmed the device to measure cholesterol levels from anonymized, leftover human plasma samples. The study results published in ACS Nano indicate that across 30 blind tests, the system measured cholesterol levels with over 97% accuracy—well above the total allowable error of 10% stipulated by CLIA guidelines. The team also conducted a proof-of-concept experiment demonstrating that the device could accommodate immunoassays, which are widely used to quantify hormones, tumor markers, and cardiac biomarkers. The next steps involve developing the system for immunoassay testing, with the ultimate goal of showcasing its ability to detect multiple biomarkers from a single sample input.

“By addressing the limitations in each component and adding in machine learning, we have created a new testing platform that could diagnose disease, detect biomarkers, and monitor therapies at home,” said Hyun-June Jang, a postdoctoral fellow and co-lead author on the paper. “This technology has the potential to detect multiple biomarkers from a single drop of blood.”

Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: The machine-learning model analyzes photos of placentas to detect health risks (Photo courtesy of Patterns, DOI: 10.1016/j.patter.2024.101097)

AI Tool Analyzes Placentas at Birth to Accurately Detect Health Risks

The placenta is crucial to the health of both the pregnant individual and the baby during pregnancy, but it is often not examined thoroughly after birth, especially in areas with limited medical resources.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.