We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cheap, Paper-Based Testing Platform Could Transform Diagnostics

By LabMedica International staff writers
Posted on 16 Oct 2024
Print article
Image: The new diagnostic test system combines a field-effect transistor (above) with a paper-based analytical cartridge (Photo courtesy of 123RF)
Image: The new diagnostic test system combines a field-effect transistor (above) with a paper-based analytical cartridge (Photo courtesy of 123RF)

At-home diagnostic tests, such as pregnancy or COVID tests, utilize paper-based assay technology to identify the presence of target molecules. Although these tests are simple and inexpensive, they primarily provide qualitative results, indicating whether a biomarker is present. In contrast, field-effect transistors (FETs), which were initially created for electronic devices, are capable of detecting the concentrations of biological molecules. Today, they serve as highly sensitive biosensors for real-time biomarker detection. Many experts believe that FETs represent the future of biosensing; however, their commercialization has been limited due to the specific testing conditions required. In a highly complex matrix like blood, FETs often struggle to detect signals from analytes. Researchers have now developed a new diagnostic test system that merges an FET with a cost-effective, paper-based diagnostic test. When paired with machine learning, this system evolves into a novel biosensor that could potentially revolutionize at-home testing and diagnostics.

Developed jointly by researchers at the University of Chicago Pritzker School of Molecular Engineering (PME, Chicago, Il, USA) and UCLA Samueli School of Engineering (Los Angeles, CA, USA), the new kind of testing system integrates an FET with a paper-based analytical cartridge, similar to the technology used in at-home pregnancy and COVID tests. This combination harnesses the high sensitivity of FETs along with the low-cost benefits of paper-based cartridges. The paper fluidic technology, particularly its porous sensing membrane, reduces the need for the complicated, controlled testing environments that FETs typically require. Additionally, it offers a low-cost basis for the system, as each cartridge costs approximately 15 cents.

The integration of deep-learning kinetic analysis further enhances the accuracy and precision of the testing results within the FET. To evaluate the system, the researchers programmed the device to measure cholesterol levels from anonymized, leftover human plasma samples. The study results published in ACS Nano indicate that across 30 blind tests, the system measured cholesterol levels with over 97% accuracy—well above the total allowable error of 10% stipulated by CLIA guidelines. The team also conducted a proof-of-concept experiment demonstrating that the device could accommodate immunoassays, which are widely used to quantify hormones, tumor markers, and cardiac biomarkers. The next steps involve developing the system for immunoassay testing, with the ultimate goal of showcasing its ability to detect multiple biomarkers from a single sample input.

“By addressing the limitations in each component and adding in machine learning, we have created a new testing platform that could diagnose disease, detect biomarkers, and monitor therapies at home,” said Hyun-June Jang, a postdoctoral fellow and co-lead author on the paper. “This technology has the potential to detect multiple biomarkers from a single drop of blood.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
New
Mumps Virus Test
ZEUS ELISA Mumps IgG Test System

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.