We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

By LabMedica International staff writers
Posted on 13 Nov 2024
Print article
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly monitor the concentration of these drugs in their bodies. However, the current diagnostic technologies used in hospitals for this purpose face challenges in terms of both accuracy and time efficiency. The most widely used method, immunoassay, is prone to cross-reactions with similar drugs, which lowers diagnostic accuracy. While mass spectrometry, which ionizes samples using electrospray, offers greater accuracy, it is time-consuming and expensive, creating additional burdens for patients. To address these limitations, researchers have developed a novel diagnostic and treatment system based on nanomaterials for therapeutic drug monitoring (TDM) in epilepsy patients. This approach promises to significantly reduce the time and cost of current diagnostics while maintaining accuracy, ultimately easing the burden on patients managing their condition.

This innovative nanomaterial-based diagnostic method was developed by scientists at the Korea Research Institute of Standards and Science (KRISS, Daejeon, South Korea), in collaboration with domestic university hospitals. By incorporating a mixture of molybdenum ditelluride (MoTe2) and tungsten ditelluride (WTe2) nanosheets into the sample and ionizing it with a laser, the researchers were able to enhance both the speed and sensitivity of drug detection. When applied to samples from 120 epilepsy patients, the technology demonstrated over 99.9% reliability, while reducing the analysis time to just one-sixteenth of the original. Furthermore, the number of samples that could be analyzed in a single session increased more than tenfold, potentially cutting diagnostic costs by half.

Related Links:
KRISS

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Crypto + Giardia One Step Combo Card Test
CerTest Crypto + Giardia
New
Hepatitis B Test
OnSite HBsAg Rapid Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The Anti-Measles Virus ELISA 2.0 (IgG) has received CE Mark (Photo courtesy of AdobeStock)

First Of Its Kind Measles Antibody Test Validated for Use with Dried Blood Spot Samples

Measles is a highly contagious airborne disease that can lead to serious complications for those infected. With the number of measles cases increasing worldwide, expanding and improving access to testing... Read more

Immunology

view channel
Image: New research has revealed a novel biomarker for autoimmune diseases (Photo courtesy of Shutterstock)

Novel Analytical Method Tracks Progression of Autoimmune Diseases

Patients with autoimmune diseases often have lifelong contact with doctors and hospitals. The typical patient diagnosed is a woman in her fifties and the disease requires lifelong treatment.... Read more

Microbiology

view channel
Image: The unique barcoding system enables tracking of K. pneumoniae as it moves throughout the body (Photo courtesy of AdobeStock)

Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream

Bacteremia, also known as blood poisoning, occurs when bacteria manage to overcome the body's immune defenses. This condition can progress into sepsis, a serious illness that is responsible for over a... Read more

Pathology

view channel
Image: The squares are representative partial pictures from the cancer microscopy slides, that the AI system has automatically organized by their similarity (Photo courtesy of University of Jyväskylä)

New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis

Tissue analysis typically involves a pathologist reviewing scanned digital slides from a patient’s intestinal sample and marking specific areas, such as those where cancerous and related tissues are present.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.