Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Can Cancer Cells Be Reprogrammed Back to Normality?

By LabMedica International staff writers
Posted on 11 Nov 2008
A team of cancer researchers has published a report suggesting a novel approach to cancer therapy: instead of killing cancer cells, why not reprogram them to become normal again?

Investigators at Syracuse University (NY, USA) worked on leukemia, the form of cancer caused by the abnormal production of white blood cells in the bone marrow. More...
They focused on the Mixed Lineage Leukemia protein-1 (MLL1), which is one of the proteins that regulate the way DNA is packaged when white blood cells are formed. MLL1 belongs to the SET1 family of histone H3 lysine 4 methyltransferases. In normal cells, the MLL protein, which contains 3,969 amino acids, combines with three other proteins, WD-repeat protein-5 (WDR5), retinoblastoma binding protein-5 (RbBP5), and the Absent small homeotic-2-like protein (Ash2L) to create a molecular switch that controls DNA packaging.

The current paper published in the October 1, 2008, online edition of the Journal of Biological Chemistry (JBC), revealed that WDR5 preferentially recognized a previously unidentified and conserved arginine containing motif called the "Win” or WDR5 interaction motif, which is located in the N-SET region of MLL1 and other SET1 family members. The Win motif comprised six amino acids and was responsible for assembling the MLL1 molecular switch in normal cells. Treatment of cells with a synthetic version of this peptide disrupted the MLL1 molecular switch and prevented white blood cell formation.

"We believe our discovery is just the tip of the iceberg,” said senior author Dr. Michael Cosgrove, assistant professor of biology at Syracuse University. "Our hope is that from the knowledge we have gained in understanding how these proteins work in normal cells, we will be able to find new ways to treat all types of leukemia. We also think the discoveries will have broad implications in treating other types of cancer.”

The investigators speculated that the MLL1 peptide might help to reprogram DNA packaging in leukemia cells and trigger the conversion of cancer cells back into normal cells. "Reprogramming the way DNA is packaged in cancerous cells is a new idea that has the potential to lead to better treatments with fewer side effects,” said Dr. Cosgrove. "This last year has been fantastic. We have been learning something new about these proteins almost on a daily basis. Our hope is that as we continue to understand how these DNA packaging proteins work, we will find new ways to treat all types of leukemia as well as other diseases.”

Related Links:
Syracuse University


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.