We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Combinatorial Drugs Target Cancer Cell Mitochondria

By LabMedica International staff writers
Posted on 05 Mar 2009
Print article
Cancer researchers have used a process of "combinatorial” drug design to create a class of small molecule compounds that kill cancer cells by entering and destroying their mitochondria. In this case, the term describes a molecule that is directed at a specific protein, Hsp90, with the combined specificity for the mitochondria of cancer cells.

Investigators from the University of Massachusetts Medical School (Worcester, USA) named their new class of drugs Gamitrinibs. The structure of a Gamitrinib is combinatorial and contains a benzoquinone ansamycin backbone derived from the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a linker region on the C17 position, and a mitochondrial targeting moiety, either provided by one to four tandem repeats of cyclic guanidinium (Gamitrinib-G1–G4) or triphenylphosphonium (Gamitrinib–TPP-OH). By molecular dynamics simulation, the 17-AAG portion of Gamitrinib is predicted to make contacts with the Hsp90 ATPase pocket, whereas the "mitochondriotropic” guanidinium module is excluded from the binding interface, pointing outside of the ATP (adenotriphosphate)ase pocket toward the solvent. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression.

Results published in the February 23, 2009, issue of the Journal of Clinical Investigation (JCI) revealed that Gamitrinibs accumulated in the mitochondria of human tumor cell lines where they inhibited Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a "mitochondriotoxic” mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria.

The combinatorial technique allowed the development of molecules that targeted a protein that controls multiple signaling pathways. Furthermore, the drugs were directed towards one specific cellular compartment in which Hsp90 is active in tumor cells' mitochondria. Treatment with these drugs effectively induced tumor cell death in mice transplanted with human tumor cell lines. Thus, the researchers concluded that, "combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific cellular compartments, may prove a more effective strategy for developing anticancer drugs than targeting single signaling pathways.”

Related Links:

University of Massachusetts Medical School



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.