Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Direct Sequencing Measures Mutation Rate in Humans

By LabMedica International staff writers
Posted on 10 Sep 2009
An international team of 16 scientists reported the first direct measurement of the general rate of genetic mutation at individual DNA letters in humans. The team sequenced the same piece of DNA--10,000,000 or so letters (nucleotides) from the Y chromosome--from two men separated by 13 generations, and counted the number of differences. Among all these nucleotides, they found only four mutations.

In 1935, one of the founders of modern genetics, J. B. S. Haldane, studied men in London (UK) with the blood disease hemophilia and estimated that there would be one in 50,000 incidence of mutations causing hemophilia in the gene affected--the equivalent of a mutation rate of possibly one in 25 million nucleotides across the genome. Others have measured rates at a few additional specific genes or compared DNA from humans and chimpanzees to produce general estimates of the mutation rate expressed more directly in nucleotides of DNA.

Extraordinarily, the new research, published in the August 27, 2009, issue of the journal Current Biology, revealed that these early estimates were correct--in total, humans all carry 100-200 new mutations in their DNA. This is equivalent to one mutation in each 15-30 million nucleotides. Fortunately, most of these are harmless and have no apparent effect on one's health or appearance. "The amount of data we generated would have been unimaginable just a few years ago,” said Dr. Yali Xue, from the Wellcome Trust Sanger Institute (Cambridge, UK), and one of the project's leaders. "But finding this tiny number of mutations was more difficult than finding an ant's egg in the emperor's rice store.”

Team member Qiuju Wang recruited a family from China who had lived in the same village for centuries. The team studied two distant male-line relatives--separated by thirteen generations--whose common ancestor lived 200 years ago. To establish the rate of mutation, the team examined an area of the Y chromosome. The Y chromosome is unique in that, apart from rare mutations, it is passed unchanged from father to son, so mutations accumulate slowly over the generations. Despite many generations of separation, researchers discovered only 12 differences among all the DNA letters examined. The two Y-chromosomes were still identical at 10,149,073 of the 10,149,085 letters examined. Of the 12 differences, eight had arisen in the cell lines used for the work. Only four were true mutations that had occurred naturally through the generations.
Scientists have known for a long time that mutations occur occasionally in each human being, but have had to guess precisely how often. Now, because advances in the technology for reading DNA, this new research has been possible, according to the investigators.

Understanding mutation rates is key to many aspects of human evolution and medical research: mutation is the ultimate source of all genetic variation and provides a molecular clock for measuring evolutionary timescales. Mutations can also lead directly to diseases such as cancer. With better measurements of mutation rates, scientists could improve the calibration of the evolutionary clock, or test ways to reduce mutations, for example.

Even with the latest DNA sequencing technology, the researchers had to design a special strategy to search for the vanishingly rare mutations. They used next-generation sequencing to establish the order of letters on the two Y-chromosomes and then compared these to the Y chromosome reference sequence.

Having identified 23 candidate single nucleotide polymorphisms (SNPs)--or single letter changes in the DNA--the investigators amplified the regions containing these candidates and checked the sequences using the standard Sanger method. Four naturally occurring mutations were confirmed. Knowing this number of mutations, the length of the area that they had searched, and the number of generations separating the individuals, the team was able to calculate the rate of mutation.

"These four mutations gave us the exact mutation rate--one in 30 million nucleotides each generation--that we had expected,” stated the study's coordinator, Chris Tyler-Smith, also from The Wellcome Trust Sanger Institute. "This was reassuring because the methods we used--harnessing next-generation sequencing technology--had not previously been tested for this kind of research. New mutations are responsible for an array of genetic diseases. The ability to reliably measure rates of DNA mutation means we can begin to ask how mutation rates vary between different regions of the genome and perhaps also between different individuals.”

Participating Centers involved in the project include: The Wellcome Trust Sanger Institute (Hinxton, Cambridgeshire, UK); Chinese People's Liberation Army General Hospital (Beijing, China); and Beijing Genomics Institute at Shenzhen (China).

Related Links:

Wellcome Trust Sanger Institute



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.