We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Water-Soluble Peptides with Stable Helical Structure Are Potential Nanoparticle Carriers

By LabMedica International staff writers
Posted on 15 Mar 2011
A paper describes the synthesis of peptides with stable helical structure that may serve as nanoparticle carriers for drug and gene delivery.

Water-soluble peptides with stable helical structure are of interest to protein chemists because of their importance in basic science and their broad utility in medicine and biotechnology. Incorporating charged amino-acid residues to improve peptide solubility, however, usually leads to reduced helical stability because of increased side-chain charge repulsion, reduced side-chain hydrophobicity, and the disruption of intramolecular hydrogen bonding.

In the current study, published in the February 22, 2011, online edition of the journal Nature Communications, investigators at the University of Illinois (Urbana-Champaign, USA) showed that water-soluble, ultra-stable alpha-helical polypeptides could be produced by elongating charge-containing amino-acid side chains to position the charges far removed from the polypeptide backbone. As the length of the side chains with charges on the end increased, the tendency of the polypeptides to form helices also increased. The helices prepared by this method displayed remarkable stability even when compared to noncharged helices and were resistant to temperature, pH, and other denaturing agents that would denature most polypeptides.

"You can achieve the helical structure and the solubility but you have to design the helical structure in a very special way. The peptide design needs a very specific sequence. Then you are very limited in the type of polypeptide you can build, and it is not easy to design or handle these polypeptides,” said senior author Dr. Jianjun Cheng, professor of materials science and engineering at the University of Illinois. "It is such a simple idea – move the charge away from the backbone. It is not difficult at all to make the longer side chains, and it has amazing properties for winding up helical structures simply by pushing the distance between the charge and the backbone.”

"We want to test the correlation of the lengths of the helices and the circulation in the body to see what is the impact of the shape and the charge and the side chains for clearance in the body,” said Dr. Cheng. "Recent studies show that the aspect ratio of the nanostructures – spherical structures versus tubes – has a huge impact on their penetration of tumor tissues and circulation half-lives in the body.”

Related Links:

University of Illinois




Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Multi-Function Pipetting Platform
apricot PP5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.