We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Metagenomics Analysis Tool Reduces False Discovery Rates

By LabMedica International staff writers
Posted on 30 Mar 2015
Genomic researchers recently described a novel new tool for analyzing the complex data generated during DNA screens of mixed populations of organisms such as the human gut microbiome.

DNA screening of entire communities of organisms has been termed metagenomics. Such screening generates an enormous data set of short sequences, or "reads," which must be evaluated in order to yield meaningful information. While existing microbial community profiling methods have attempted to rapidly classify the millions of reads output from modern DNA sequencing platforms, the combination of incomplete databases, similarity among otherwise divergent genomes, errors and biases in sequencing technologies, and the large volumes of sequencing data required for metagenome sequencing has led to unacceptably high false discovery rates (FDR).

To correct these problems, investigators at the Los Alamos National Laboratory (New Mexico, USA) developed a new method for analysis of DNA sequencing data. The new tool, described in the March 12, 2015, online edition of the journal Nucleic Acids Research, is called Genomic Origins through Taxonomic CHAllenge or GOTTCHA, which makes use of a database of reference genomes that have been preprocessed to retain only unique segments of the genomes at any level of taxonomy.

GOTTCHA analyzes the distribution and depth of coverage of only the unique fraction of each reference genome—the unique genome—to identify the true community composition and accurate relative abundance of members of the community. GOTTCHA uses empirically-derived coverage limits, supported by machine-learning approaches, to set the limits of detection. The result is a scalable, all-purpose, metagenomic community profiler with superior classification and statistical performance over all currently available tools.

"We have developed a new tool in this rapidly expanding and evolving field of what is called metagenomics," said senior author Dr. Patrick Chain, metagenomics team leader at the Los Alamos National Laboratory. "It uses nucleic acid data and looks for sections that map uniquely to a preconstructed database."

"Metagenomics is the study of entire microbial communities using genomics, such as when you sequence the DNA of a whole community of organisms at once," said Dr. Chain. "The result is an enormous data set of short sequences, or reads, that you need to sort through to try to understand which organisms are actually present, and what they may be doing. Here at Los Alamos, we specialize in incredibly large data sets; we know how to handle them whether it is for physics, ocean, or climate modeling, or for complex biological insights."

The GOTTCHA software, associated databases, and training datasets are accessible to biotech researchers online (please see Related Links below).

Related Links:
Los Alamos [US] National Laboratory
GOTTCHA



New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.