We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Researchers Define the Structure of Parkinson's Disease Protein Aggregates

By LabMedica International staff writers
Posted on 12 Apr 2016
The use of advanced imaging techniques has enabled biochemists to determine the molecular structure of alpha-synuclein protein fibrils such as those found in the brains of individuals with Parkinson's disease.

The accumulation of misfolded alpha-synuclein amyloid fibrils leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. It has been exceedingly difficult to define the structure of alpha-synuclein fibrils due to their insolubility and complexity.

Investigators at the University of Illinois (Champaign-Urbana, USA) and their collaborators used advanced imaging techniques such as magic-angle spinning nuclear magnetic resonance (a type of solid state NMR) to measure the placement of atoms in samples of alpha-synuclein.

They described in the March 28, 2016, online edition of the journal Nature Structural and Molecular Biology a structure with common amyloid features including parallel, in-register beta-sheets and hydrophobic-core residues. The structure revealed substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. The results were validated using EM (electron microscope) and X-ray fiber diffraction.

The investigators synthesized alpha-synuclein fibrils according to their structural data and showed that these fibrils induced robust Parkinson's-like pathology in primary neuronal cultures.

"We had to find patterns in the data and systematically test all the possibilities for how the protein would fit together," said senior author Dr. Chad Rienstra, professor of chemistry at the University of Illinois. "It is like when you solve a really complex puzzle, you know you have it right at the end because all the pieces fit together. That is what we got with this structure. This is the first structure of the full-length fibril protein, which is now well established to be important for the pathology of Parkinson's disease. Knowing that structure will open up many new areas of investigation for diagnosing and treating Parkinson's disease."

"We think that the structure that we resolved of alpha-synuclein fibrils will be really significant in the immediate future and has use for diagnosing Parkinson's in patients before they are symptomatic," said Dr. Rienstra. "Once people start having symptoms, whether of Alzheimer's or Parkinson's, in many ways it is a little too late to be effective with therapy. But if you catch it early, I think there is a lot of promise for therapies that are being developed. Those are all relying upon the structures that we are solving."

Related Links:

University of Illinois



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.