We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mass Spectrometry Detection for the Masses

By LabMedica International staff writers
Posted on 17 Jul 2017
Researchers are developing a plasma-based technology to enable generalized use of mass spectrometry (MS) with new instruments that can analyze a much broader range of molecular species than current technology allows.

Current MS instruments are bulky, expensive, and typically specialize in one class of chemicals, discouraging widespread use outside of a specialized lab setting. Better technology is needed to make more flexible instruments. Research being conducted at Rensselaer Polytechnic Institute (Troy, NY, USA) uses an atmospheric-pressure glow discharge plasma – a partially ionized gas that can be made stable at room temperature and pressure – to probe samples for elemental and molecular species, and could lead to user-friendly MS analyses with broad capabilities.

“Ideally we want one system that can detect everything, and we want to be able to take that system into the field to test materials on site,” said Prof. Jacob Shelley of Rensselaer Polytechnic, “We’re trying to make a more flexible instrument that will allow us to detect many things simultaneously.”

The hitch is that current instruments can only analyze molecules that are in gas state and ionized, which means that most samples must first be processed. Current MS relies on a variety of time-consuming processing methods that separate and ionize molecules prior to analysis. And depending on the method, samples (e.g. tissues, pharmaceuticals, or foods) may be destroyed during processing.

The biggest challenge to developing a generalized processing method is the chemistry needed to ionize the molecule. Most methods rely on specific chemistries that favor ionization of one class of molecules over another. Prof. Shelley team is developing a method that takes advantage of the unusual properties and chemistries of plasmas, which are rich in free-moving ions and electrons, and therefore highly interactive. Although the most commonly known plasmas are extremely hot (at nearly 10,000 degrees Kelvin, some plasmas rival the sun’s temperature), the team is working with more recently developed glow discharge plasmas that are stable at room temperature and atmospheric pressure.

In his lab, Prof. Shelley demonstrates an experimental instrument so benign it can test samples ionized from a fingertip, and so versatile it can detect molecular species from small amounts of metals to large labile biomolecules like peptides and proteins. In developing the technology, the team has used the instrument to detect counterfeit honey, to quantify harmful toxins in freshwater algal blooms, and to screen the raw materials used in nutritional supplements.

“The plasma is useful as an ionization source because it makes a diverse range of chemistries available,” said Prof. Shelley, “It may make it possible to ionize a broad class of molecules, which could lead to more generalized instruments.”

This research is enabled by the New Polytechnic vision, a transformative emerging paradigm for higher education, which recognizes that even the most talented person working alone cannot adequately address global challenges and opportunities. It helps Rensselaer serve as a crossroads for collaborations to address some of the world’s most pressing technological challenges.

Related Links:
Rensselaer Polytechnic Institute


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Centromere B Assay
Centromere B Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.