Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Images Evaluated for CSF Electrophoresis of IgG Bands

By LabMedica International staff writers
Posted on 02 Jan 2018
Multiple sclerosis (MS) involves inflammatory lesions of white matter in the central nervous system (CNS) that spread over time. In MS immune reactions lead to intrathecal synthesis of specific immunoglobulins (IgGs) that can be detected in biological fluid samples both quantitatively and qualitatively by isoelectric focusing of supplementary oligoclonal IgG bands.

The detection of oligoclonal bands (OCBs) in cerebral spinal fluid (CSF) by isoelectric focusing (IEF) is a common diagnostic tool. Chromogenic staining of immunoblots facilitates detection. The higher the concentration of the IgG bands, the greater the intensity of the colors and the more readable the profile, makes interpretation easier.

Scientists at the Faculty of Medicine et de Maieutique (Lille, France) performed IgG isoelectric focusing on agarose gel and immunoblot membrane (10 cm × 8 cm). A simple tool, using the MATLAB application, to facilitate and improve isoelectric focusing profile analysis was evaluated in terms of its sensitivity, repeatability and reproducibility. A comparison between human readers and semi-automatic method was also been performed. IgG concentrations in cerebrospinal fluid generally range from 20 mg/L to 45 mg/L.

The team found that results from the semi-automatic method were found to be equivalent or superior to generally employed laboratory methods. Repeatability analysis for semi-automatic processing yielded coefficients of variation (CVs) in the 3%–7% range, and using a sample with an estimated IgG concentration of 200 mg/L, four bands were still visible after dilution to 5 mg/L, corresponding to band concentrations of 1.1mg/L–1.6 mg/L. They also found that discordances between visual inspection and automatic analysis only appear at threshold levels for interpretation (the gray zone).

The comparison between visual reading and automatic reading was: 24/31 profiles were concordant, four visually oligoclonal profiles were said to be non-oligoclonal by the automatic inspection and three visually non-oligoclonal profiles were said to be oligoclonal by the automatic method. The semi-automatic method has acceptable performance for routine implementation. The study was available online on November 10, 2017, in the journal Practical Laboratory Medicine.

Related Links:
Faculty of Medicine et de Maieutique


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Piezoelectric Micropump
Disc Pump
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.