Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Therapy Treatment Uses Microparticles to Deliver DNA or RNA

By LabMedica International staff writers
Posted on 18 Dec 2018
A novel gene therapy approach for correcting hereditary blood disorders is based on the use of megakaryocytic microparticles (MkMPs) to deliver plasmid DNAs and small RNAs to hematopoietic stem and progenitor cells (HSPCs).

HSPCs are important target cells for gene therapy applications. However, currently genetic modifications of HSPCs rely on viral vectors, which is a delivery method with considerable risk of side effects to the patient.

To replace the viral delivery method, investigators at the University of Delaware (Newark, USA) developed a system based on megakaryocytic microparticles (MPs) for targeted delivery of plasmid DNA (pDNA) and small RNAs to HSPCs. Megakaryocytes (Mks) are large polyploidy cells derived from HSPCs upon thrombopoietin (Tpo) stimulation, which, upon maturation and fragmentation, give rise to circulating platelets, as well as to MkMPs, which are the most abundant MPs in circulation. The investigators had shown previously that, in vitro, Mks also shed MkMPs. They had also demonstrated that, in vitro, MkMPs specifically targeted and were taken up by human HSPCs through fusion and/or endocytosis following specific receptor recognition.

The investigators reported in the November 7, 2018, online edition of the journal Science Advances that with an optimized electroporation protocol, an average of 4200 plasmid copies per MP could be loaded into MP, thus enabling effective delivery of green fluorescent protein (GFP)-encoding pDNA to HSPCs and HSPC nuclei, with up to 81% nuclei containing pDNA. Effective functional small interfering RNA (siRNA) and microRNA (miRNA) delivery were also demonstrated.

The investigators also found that human MkMPs could target mouse HSPCs in vivo to induce de novo platelet biogenesis in a simple murine model, thus demonstrating in vivo target specificity and efficacy even when using a cross-species model. Furthermore, patient-specific or generic megakaryocytic MPs could be readily generated and stored frozen, which suggests that this system has great potential for therapeutic applications targeting HSPCs.

"A lot of researchers are trying to deliver DNA, nucleic acids, or drugs to target hematopoietic stem cells," said senior author Dr. Eleftherios T. Papoutsakis, professor of chemical and biomolecular engineering at the University of Delaware. "This is the right cell to target because it gives rise to all blood cells."

Related Links:
University of Delaware


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.