We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Interaction of Transcription Factors Can Predict DNA Binding

By LabMedica International staff writers
Posted on 13 Feb 2019
Print article
Image: A photomicrograph showing the CDX2 transcription factor localized to mitotic chromosomes (Photo courtesy of Dr. David Suter, Ecole Polytechnique Fédérale de Lausanne).
Image: A photomicrograph showing the CDX2 transcription factor localized to mitotic chromosomes (Photo courtesy of Dr. David Suter, Ecole Polytechnique Fédérale de Lausanne).
A team of Swiss stem cell researchers has demonstrated that by observing the binding of transcription factors to mitotic chromosomes it is possible to predict how they will bind non-specifically to DNA.

A transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate genes in order to make sure that they are expressed in the right cell at the right time and in the right amount throughout the life of the cell and the organism.

TFs regulate gene expression by binding regulatory sequences of target genes. TF ability to occupy specific genomic sites depends on their nuclear concentration, their ability to search the genome, and the chromatin environment of their binding sites. How TFs maximize search efficiency for specific sites is not well understood. To clarify this matter, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) analyzed 501 TFs in mouse embryonic stem cells by determining how they bound to mitotic chromosomes, a property that has been linked to the ability of TFs to associate with DNA in a non-specific manner.

For this study, the investigators combined quantitative measurements of mitotic chromosome binding (MCB), TF mobility measurements by fluorescence recovery after photobleaching, single molecule imaging of DNA binding, and mapping of TF binding and chromatin accessibility.

Results published in the January 30, 2019, online edition of the journal Nature Communications revealed that TFs associating to mitotic chromosomes were enriched in DNA-rich compartments in interphase and displayed slower mobility in interphase and mitosis. MCB correlated with interphase TF properties such as sub-nuclear localization, mobility, and with large differences in TF ability to occupy specific genomic sites. Based on these findings, the investigators proposed that the co-localization of TFs with mitotic chromosomes was a proxy for TF non-specific DNA binding properties, which regulated TF search efficiency for their specific binding sites and thereby their impact on chromatin accessibility.

"Transcription factors differ largely in their ability to scan the genome to find their specific binding sites, and these differences can be predicted by simply looking at how much they bind to mitotic chromosomes," said senior author Dr. David M. Suter, assistant professor of stem cell research at Ecole Polytechnique Fédérale de Lausanne. "Transcription factors that are the most efficient in searching the genome could be able to drive broad changes in gene expression patterns even when expressed at low concentrations, and can therefore be particularly important for cell fate decision processes."

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Ultrasonic Cleaner
UC 300 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.