We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MAIT Cell Activation Dynamics Associated with COVID-19 Disease Severity

By LabMedica International staff writers
Posted on 13 Oct 2020
The balance between protective versus pathological immune responses in COVID-19 has been a concern since the onset of the pandemic. SARS-CoV-2 infection can lead to acute respiratory distress syndrome (ARDS), a condition characterized by aggressive inflammatory responses in the lower airways.

Severe COVID-19 is not only due to direct effects of the virus, but also in part to a misdirected host response with complex immune dysregulation of both innate and adaptive immune and inflammatory components. Emerging evidence indicates that mucosa-associated invariant T (MAIT) cells are innate-like sensors of viral infection.

Infectious Disease specialists at the Karolinska University Hospital (Stockholm, Sweden) recruited 69 SARS-CoV-2-infected patients 18 to 78 years old with acute COVID-19 disease admitted to the hospital, or followed up in convalescent phase. The team examined blood samples from 24 patients admitted to the Karolinska University Hospital with COVID-19 disease and compared them to blood samples from 14 healthy controls and 45 individuals who had recovered from COVID-19.

Absolute counts in whole blood were assessed by flow cytometry using BD Multitest 6-color TBNK reagents in association with BD Trucount tubes (BD Biosciences, San Jose, CA, USA). Sera were evaluated for soluble factors using proximity extension assay technology (Olink AB, Uppsala, Sweden). Flow cytometry was performed using multiple antibodies and Samples were acquired on a BD Biosciences’ BD FACSymphony A5 flow cytometer.

The investigators found that the number of circulating MAIT cells was sharply lower in COVID-19 patients and the remaining MAIT cells were highly activated, indicating that they play a role in the response to SARS-CoV-2. Further, single-cell RNA sequencing data suggests that MAIT cells are highly enriched among T cells infiltrating in the airways of COVID-19 patients.

Flow cytometry phenotypes of MAIT cells in COVID-19 found that they were characterized by high expression of CD69 (CD69high) and diminished expression of the chemokine CXCR3 (CXCR3low). Both phenotypes were associated with poor clinical outcomes in the patient cohort. Within the airways, transcriptomic analysis revealed significant MAIT cell enrichment and proinflammatory interleukin 17A (IL-17A) profile.

In convalescent patients, there seems to be a recovery of MAIT cells, including normalization of phenotypes, within weeks from resolution of symptoms. The authors suggested that this may help patients fight future microbial infections. Interestingly, CXCR3 levels were still low in some convalescent samples, raising the possibility that it may be a lasting alteration in MAIT cells post-COVID-19.

Johan K. Sandberg, PhD, a Professor of Medicine and senior author of the study, said, “The findings of our study show that the MAIT cells are highly engaged in the immunological response against COVID-19. A likely interpretation is that the characteristics of MAIT cells make them engaged early on in both the systemic immune response and in the local immune response in the airways to which they are recruited from the blood by inflammatory signals. There, they are likely to contribute to the fast, innate immune response against the virus. In some people with COVID-19, the activation of MAIT cells becomes excessive and this correlates with severe disease.” The study was published on September 28, 2020 in the journal Science Immunology.

Related Links:
Karolinska University Hospital
BD Biosciences
Olink AB



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.