We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI with Swarm Intelligence Detects COVID-19 in Data Stored in Decentralized Fashion

By LabMedica International staff writers
Posted on 27 May 2021
Using a principle called “swarm learning” an international research team has trained artificial intelligence (AI) algorithms to detect blood cancer, lung diseases and COVID-19 in data stored in a decentralized fashion.

This approach by experts from the German Center for Neurodegenerative Diseases (DZNE; Bonn, Germany), the University of Bonn (Bonn, Germany) and Hewlett Packard Enterprise (HPE; Houston, TX, USA) has advantages over conventional methods since it inherently provides privacy preservation technologies, which facilitates cross-site analysis of scientific data. Swarm learning could thus significantly promote and accelerate collaboration and information exchange in research, especially in the field of medicine.

Science and medicine are becoming increasingly digital. Analyzing the resulting volumes of information - known as “big data” - is considered a key to better treatment options. However, the exchange of medical research data across different locations or even between countries is subject to data protection and data sovereignty regulations. In practice, these requirements can usually only be implemented with significant effort. In addition, there are technical barriers: For example, when huge amounts of data have to be transferred digitally, data lines can quickly reach their performance limits. In view of these conditions, many medical studies are locally confined and cannot utilize data that is available elsewhere.

In light of this, an international research collaboration tested a novel approach for evaluating research data stored in a decentralized fashion. The basis for this was the still young “Swarm Learning” technology developed by HPE. In addition to the IT company, numerous research institutions from Greece, the Netherlands and Germany - including members of the “German COVID-19 OMICS Initiative” (DeCOI) - participated in this study.

Swarm Learning combines a special kind of information exchange across different nodes of a network with methods from the toolbox of “machine learning”, a branch of AI. The linchpin of machine learning are algorithms that are trained on data to detect patterns in it - and that consequently acquire the ability to recognize the learned patterns in other data as well. With Swarm Learning, all research data remains on site. Only algorithms and parameters are shared - in a sense, lessons learned. Unlike “federated learning”, in which the data also remains locally, there is no centralized command center. Thus, the AI algorithms learn locally, namely on the basis of the data available at each network node. The learning outcomes of each node are collected as parameters through the blockchain and smartly processed by the system. The outcome, i. e. optimized parameters, are passed on to all parties. This process is repeated multiple times, gradually improving the algorithms’ ability to recognize patterns at each node of the network.

The researchers are now providing practical proof of this approach through the analysis of X-ray images of the lungs and of transcriptomes: The latter are data on the gene activity of cells. In the current study, the focus was specifically on immune cells circulating in the blood - in other words, white blood cells. The research team addressed a total of four infectious and non-infectious diseases: two variants of blood cancer (acute myeloid leukemia and acute lymphoblastic leukemia), as well as tuberculosis and COVID-19. The data included a total of more than 16,000 transcriptomes. The swarm learning network over which the data were distributed typically consisted of at least three and up to 32 nodes. Independently of the transcriptomes, the researchers analyzed about 100,000 chest X-ray images. These were from patients with fluid accumulation in the lung or other pathological findings as well as from individuals without anomalies. These data were distributed across three different nodes.

The analysis of both the transcriptomes and the X-ray images followed the same principle: First, the researchers fed their algorithms with subsets of the respective data set. This included information about which of the samples came from patients and which from individuals without findings. The learned pattern recognition for “sick” or “healthy” was then used to classify further data, in other words it was used to sort the data into samples with or without disease. The accuracy, i.e. the ability of the algorithms to distinguish between healthy and diseased individuals, was around 90% on average for the transcriptomes (each of the four diseases was evaluated separately); in the case of the X-ray data, it ranged from 76% to 86%. The study also found that Swarm Learning yielded significantly better results than when the nodes in the network learned separately.

“The methodology worked best in leukemia. In this disease, the signature of gene activity is particularly striking and thus easiest for artificial intelligence to detect. Infectious diseases are more variable. Nevertheless, the accuracy was also very high for tuberculosis and COVID-19. For X-ray data, the rate was somewhat lower, which is due to the lower data or image quality,” said Joachim Schultze, Director of Systems Medicine at the DZNE and professor at the Life & Medical Sciences Institute (LIMES) at the University of Bonn. “Our study thus proves that Swarm Learning can be successfully applied to very different data. In principle, this applies to any type of information for which pattern recognition by means of artificial intelligence is useful. Be it genome data, X-ray images, data from brain imaging or other complex data.”

Related Links:
German Center for Neurodegenerative Diseases (DZNE)
University of Bonn
Hewlett Packard Enterprise



Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Immunofluorescence Analyzer
MPQuanti
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.