We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Ion Channel Blocker Should Promote Hypertension Research

By LabMedica International staff writers
Posted on 14 Oct 2008
Print article
A team of biophysicists has engineered a specific inhibitor for the Kir1 subgroup of the inward-rectifier K+ (Kir) ion channels that are linked to salt transport in the kidneys and to the regulation of hypertension.

Ion channels are a class of highly specialized membrane proteins that allow ions to flow across the cell membrane in a selective manner. An intricate cell signaling system precisely regulates the opening and closing of ion channels. Ionic currents through ion channels generate electrical voltage across the cell membrane, which underlies the electrical impulses in nerve, muscle, and endocrine cells.

Investigators at the University of Pennsylvania School of Medicine (Philadelphia, USA) have been developing novel protein inhibitors for various types of biologically important ion channels through both passive screening and active protein design-and-engineering. Using thermodynamic mutant cycle analysis, they have investigated both the molecular and the biophysical mechanisms through which protein inhibitors interact with the channels. In addition, they have investigated the mechanisms that determine the molecular specificity between a given protein inhibitor and its targeting channel.

Kir channels play many important biological roles and are emerging as important therapeutic targets. Subtype-specific inhibitors would be useful tools for studying the channels' physiological functions. Unfortunately, available Kir channel inhibitors lack the necessary specificity for their reliable use as pharmacological tools to dissect the various kinds of Kir channel currents

In the current paper, published in the August 5, 2008, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS), investigators reported that they had engineered a mutated version of the honeybee toxin protein tertiapin (TPN). The new molecule, TPNLQ, blocked Kir1 with high (1 nM) affinity and high (>250-fold) selectivity over many commonly studied Kir subtypes.

Kir channels in kidneys are potential new targets for treating hypertension. "The clue comes from patients with genetic defects in these channels who lose a lot of sodium because it cannot be effectively reabsorbed and thus have low blood pressure,” explained senior author Professor Zhe Lu, professor of physiology at the University of Pennsylvania School of Medicine. "An inhibitor specifically against these kidney channels will allow this idea to be tested.”

Related Links:
University of Pennsylvania School of Medicine



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.