We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Crystal Structure Reveals Secrets of Enzyme Inhibition

By LabMedica International staff writers
Posted on 01 Dec 2008
Print article
Researchers have used advanced X-ray crystallography techniques to explain how the enzyme inhibitor calpastatin binds to and blocks the enzyme calpain once it has been activated by calcium.

Calpains are non-lysosomal calcium-dependent cysteine proteinases that selectively cleave proteins in response to calcium signals and thereby control cellular functions such as cytoskeletal remodeling, cell cycle progression, gene expression, and apoptotic cell death. Following heart attack or stroke, the influx of blood into the heart muscle causes drastic increases in calcium levels and a burst of calpain activity, which causes significant damage to tissues.

Normally, the activity of calpains is tightly controlled by the endogenous inhibitor calpastatin, which is an intrinsically unstructured protein capable of reversibly binding and inhibiting four molecules of calpain, but only in the presence of calcium. It was not clear how this unstructured protein inhibits calpains without being cleaved itself, nor was it known how calcium induced changes that facilitated the binding of calpastatin to calpain.

Now, in a paper published in the November 20, 2008, issue of the journal Nature investigators at Queen's University (Kingston, ON, Canada) reported that they had obtained the 2.4-angstrom-resolution crystal structure of calcium-bound calpain bound by one of the four inhibitory domains of calpastatin. Calpastatin was seen to inhibit calpain by occupying both sides of the active site cleft. Although the inhibitor passed through the active site cleft, it escaped cleavage in a novel manner by looping out and around the active site cysteine. The inhibitory domain of calpastatin recognized multiple lower affinity sites present only in the calcium-bound form of the enzyme, resulting in an interaction that was tight, specific, and calcium dependent. This crystal structure, and that of a related complex, also revealed the conformational changes that calpain underwent on binding calcium, which included opening of the active site cleft and movement of the domains relative to each other to produce a more compact enzyme.

"This is particularly exciting because the enzyme structure we were seeking – and the way its inhibitor blocks activity without itself being damaged – have proved so elusive until now,” said senior author Dr. Peter Davies, professor of biochemistry at Queen's University.

Related Links:

Queen's University

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.