We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mathematic Modeling Predicts Drug Response in Virtual Patient

By LabMedica International staff writers
Posted on 28 Jan 2009
Print article
A new theranostic method for prediction of personalized therapy combines tumor xenografts with mathematical models.

There is a paucity of clinical treatment data on rare tumors such as mesenchymal chondrosarcoma (MCS). The new method was validated for determining an improved treatment schedule for an MCS patient suffering from severe myelosuppression with pancytopenia.

Growth curves and gene expression analysis of xenografts in mice, derived from the patient's lung metastasis, served for creating a mathematical model of MCS progression and adapting it to the xenograft setting. The pharmacokinetics (PK) and pharmacodynamics (PD) of six drugs were modeled, and model variables were adjusted by patient-specific chemosensitivity tests.

Simulation of the adapted tumor growth model was performed in conjunction with the relevant human PK/PD models and particular dosing regimens. Where available, patient-specific chemosensitivity information was used to fine-tune the PD models. Other publicly available data were used for the mathematical PK and PD models of the drugs in the xenograft experiments. Following the initial assessment of model prediction accuracy, the variables of several drug models were reevaluated and the accuracy reassessed.

The mathematical model was adjusted to describe the patient's metastatic growth dynamics using gene expression analysis of key proteins in mice and humans, and various treatment regimens were tested. The efficacy of different treatments may be assessed on xenograft models only, but this method is slow, costly, and does not reflect human physiology; it also does not consider patient safety.

The study was carried out by Professor Zvia Agur and her colleagues from Optimata Ltd (Ramat Gan, Israel) together with scientists in the United States. A description of the study was published in the November 1, 2008 issue of the journal Cancer Research.

The MSC patient was treated according to the recommended regimen of drugs based on the simulations. Professor Agur said that after treatment the patient lived for almost a year with a greatly improved quality of life, going back to work and playing tennis. Eventually the patient succumbed to pulmonary progression of the disease.

Prof. Agur is the founder, chairperson, and chief scientific officer of Optimata Ltd and president of the Institute for Biomathematics (IMBM; Bene Ataroth, Israel).

Optimata is a modeling-based biopharmaceutic company, providing comprehensive solutions and navigating drug development through shorter, safer pathways. Expert in predictive biosimulation, Optimata mathematically models patient physiological and pathological processes, along with the dynamics of drug-patient interactions, with a special focus on cancer and oncology drugs.

Simulated by Optimata virtual patient software, these models provide valuable drug effect predictions, with recommendations of optimal treatment regimens per clinical indication and patient population.

IMBM is an independent research institute, which uses analytic and computational approaches for optimizing the treatment of cancer and infectious diseases.

Related Links:
Optimata
IMBM


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Collection Container
Urine Monovette
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.